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Abstract

Despite the efforts on reducing maritime accidents, they still occur and, from time to time, have catastrophic conse-
quences both in personal, environmental and financial terms. Structural failure is the major cause of ships wreckages
and, as such, Vessel Classification Societies impose extensive inspection schemes for assessing the structural integrity
of vessels.

The external and internal parts of the hull can be affected by different kinds of defects typical of steel surfaces and
structures, such as cracks and corrosion. Nowadays, to detect these defects, visual hull inspections are carried out at a
great cost. The goal of the EU-funded FP7 MINOAS project is to develop a fleet of robots for automating as much as
possible the aforementioned inspection and maintenance operations.

Within this general context, the work presented constitutes a first attempt towards the remote visual inspection and
documentation of hull surfaces. In this regard, the two main defective situations, cracks and corrosion, are expected
to be autonomously or semi-autonomously detected by means of computer vision techniques.

In this work, several algorithms are presented for visual detection of the above mentioned two kinds of defects. On
the one hand, a crack detector is described, which is based on a percolation process that exploits the morphological
properties of cracks in steel surfaces: dark, narrow and elongated sets of connected pixels.

On the other hand, two different approaches for corrosion detection are introduced and compared. While the first
one takes profit from the distribution of color in corroded areas, the second one has been built around a weak classifier
cascade scheme, separating the spatial and colour analysis in two different steps. As an final contribution, the crack
detector is combined with the corrosion detector in order to guide the crack location and improve its performance. The
obtained detectors have shown promising rates of detection as well as close to real-time performance.
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1. Introduction

Vessels constitute one of the most cost effective forms
of transporting bulk goods around the world. However,
despite the efforts on reducing maritime accidents, they
still occur and, from time to time, have catastrophic con-
sequences both in personal, environmental and financial
terms. Structural failure is the major cause of ships wreck-
ages and, as such, Classification Societies (also known as
Shipping Registers, Flag States, etc.) impose extensive
inspection schemes for assessing the structural integrity
of vessels.

An important part of the vessel maintenance has to do
with the visual inspection of the external and internal parts
of the vessel hull. They can be affected by different kinds
of defects typical of steel surfaces and structures, such as
cracks and corrosion. These two kinds of defects are indi-
cators of the state of the metallic surface and, as such,
an early detection prevents the structure from buckling
and/or fracturing.

Nowadays, to perform a complete hull inspection, the
vessel has to be emptied and situated in a dockyard, where
typically temporary staging, lifts, movable platforms, etc.
need to be installed to allow the workers for close-up in-
spection (and repair if needed) of all the different metal-
lic surfaces and structures. Taking into account the huge
dimensions of some vessels, this process can mean the
visual assessment of more than 600,000 m2 of steel. Be-
sides, the surveys are on many occasions performed in
hazardous environments for which the access is usually
difficult, while the operational conditions turn out to be
sometimes extreme for human operation. For large ton-
nage vessels, such as Ultra Large Crude Carriers (ULCC),
total expenses can be as high as one million euros.

Corrosion and the presence of cracks are clear indica-
tors of the state of the hull metallic structures, and, thus,
are of great interest for the surveyor (see Figure 1). On
the one hand, cracks generally develop at intersections of
structural items or discontinuities due to stress concen-
tration, although they also may be related to material or
welding defects. If the crack remains undetected and un-
repaired, it can grow to a size where it can cause sudden
fracture. Therefore, care is needed to visually discover
fissure occurrences in areas prone to high stress concen-
tration.

On the other hand, different kinds of corrosion may
arise: general corrosion, that appears as non-protective
friable rust which can occur uniformly on uncoated sur-
faces; pitting, a localized process that is normally initi-
ated due to local breakdown of coating and that derives,
through corrosive attack, in deep and relatively small di-
ameter pits that can in turn lead to hull penetration in
isolated random places; grooving, again a localized pro-
cess, but this time characterized by linear shaped corro-
sion which occurs at structural intersections where wa-
ter collects and flows; and weld metal corrosion, which
affects the weld deposits, mostly due to galvanic action
with the base metal, and are likelier in manual welds than
in machine welds.

To determine the state of a corroded structure it is com-
mon to estimate the corrosion level as percentage of af-
fected area. Traditional methods quantify corrosion by
visual comparison of the area under study with dot pat-
terned charts (see Figure 1[bottom right]).

The goal of the EU-funded FP7 MINOAS project is to
develop a fleet of robots for automating as much as possi-
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Figure 1: Defective situations to be detected.

ble the aforementioned inspection (and maintenance) op-
erations. Within this general context, the work that is pre-
sented in this paper constitutes a first attempt towards the
remote visual inspection and documentation of hull sur-
faces. In this regard, the two main defective situations,
cracks and corrosion, are expected to be autonomously or
semi-autonomously detected by means of the algorithms
presented in this paper.

The following sections describe several methods and
asses their performance. Tests have been performed over
a laptop with an Intel Core2 Duo processor running at
2.20GHz, with 4 GB of RAM and executing Windows
Vista. It is also important to notice that execution times
do not comprise image preprocessing, thus they just refer
to the execution of the proposed algorithms.

The paper is organized as follows: Section 2 reviews
the state of the art related to hull inspection and com-
puter vision approaches for defect inspection, in Section 3
a crack detection method is described and its performance
is assessed, in Sections 4 and 5 two different corrosion de-
tection algorithms, and the results obtained, are discussed
and compared, Section 6 presents an improved crack de-
tection method which combines a crack and a corrosion
detectors. Finally, Section 7 concludes the paper.

2. State of the art

A number of proposals of automated or semi-
automated hull inspection can be found in the scientific
literature, both commercial and non-commercial. How-
ever, most of them refer to inspection of the external
part of the hull by means of Remotely Operated Vehi-
cles [1, 9, 13, 32, 41], while just a few proposals use Un-
manned Vehicles, e.g. see [14]. The main goal of those
systems is to assist with the detection of the loss of the
external coating due to corrosion, detection of life beings
attached to the hull which in turn contribute to accelerat-
ing corrosion, detection of artificial objects attached to the
hull (to avoid sabotages), weld inspection, etc. Most part
of those systems do not use visual sensors to perform the
inspection and if they use them, the output of the system
is a mosaic to be surveyed by a human expert, so that no
on-line defect inspection is performed.

Talking about defect detection in general, the vision
literature contains a number of proposals. The start-
ing point for the search that has been performed is the
Keith Price annotated computer vision bibliography list
1. This list comprises main conferences and journals
on pattern recognition and image processing: Proceed-
ings of the IAPR International Conference on Pattern
Recognition (ICPR), Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP), Proceed-
ings of the IAPR Workshop on Machine Vision Appli-
cations (WMVA), Springer Journal of Machine Vision
and Applications (MVA), Springer Journal of Real Time
Imaging (RTI), IEEE Transactions on Systems, Man and
Cybernetics (TSMC), Elsevier Journal of Image and Vi-
sion Computing (IVC), etc. The search performed does
not intend to be complete, but it pretends to provide a
representative view of the different approaches and tech-
niques applied in automatic defect inspection through im-
age processing.

The different proposals reviewed can be classified de-
pending on the defect that they try to detect. Some meth-
ods are dedicated to general defect inspection, although
an important amount is devoted to crack detection in var-
ied materials.

A different classification can be performed depending

1http://iris.usc.edu/Vision-Notes/bibliography/contents.html
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on the technique applied for the detection. Some meth-
ods make use of general image processing techniques se-
lected and combined to detect a specific kind of defect in a
specific material, while others rely on a previous learning
stage using techniques such powerful as Neural Networks,
Support Vector Machines, Genetic Algorithms, etc. Ta-
ble 1 shows the proposals reviewed classified according
to this last criterion.

Some of these methods have been used as starting point
to develop the solutions that are presented, described and
assessed in the next sections.

3. Percolation-based Crack Detector

3.1. Description of the algorithm

This section presents a crack detector based on a per-
colation model, similarly to the algorithm by Yamaguchi
and Hashimoto described in [47]. This latter method was,
however, devised for detecting cracks in concrete, what
makes the authors assume a geometrical structure that
does not match exactly the shape of cracks that are formed
in steel. Besides our method, which will be referred as
PCD from now on, has been speeded up so that the algo-
rithm can run as close as possible to real-time onboard a
robotic platform.

For a start, a percolation model derives into a region-
growing procedure which starts from a seed element and
propagates in accordance with a set of rules. In our case,
the rules are defined to identify dark, narrow and elon-
gated sets of connected pixels, which are then labelled as
cracks.

Once a seed has been located, the percolation process
starts as a two-step procedure: during the first step, the
percolation is applied inside a window of N × N pix-
els until the window boundary is reached; in the second
step, if the elongation of the grown region is above εN ,
a second percolation is performed until either the bound-
ary of a window of M × M pixels (M > N) is reached
or the propagation cannot proceed because the gray level
of all the pixels next to the current boundary are above a
threshold T (see below). Finally, all the pixels within the
grown region are classified as crack pixels if the elonga-
tion is larger than εM . Elongation is calculated by means

of Equation 1:

ε =

√√√√√√√
1 −

µxx + µyy −
√

4µ2
xy + (µ2

xx − µ2
yy)

µxx + µyy +
√

4µ2
xy + (µ2

xx − µ2
yy)

, (1)

where µxx, µyy and µxy are the normalized second central
moments of the region [18].

Within the N × N or M ×M pixel window, the percola-
tion proceeds in accordance to the next propagation rules:

(1) all the 8-neighbours of the percolated area are de-
fined as candidates and

(2) each candidate p is visited and included in the per-
colated area only if its gray level value I(p) is lower
than the threshold T , which has been initialized to
the seed pixel gray level value.

At the end of the percolation process, the mean gray
scale level of the set of pixels is checked to determine if it
is dark enough to be considered as a crack. Otherwise, the
set of pixels is rejected and nothing is marked as a crack
in the current percolation.

For reducing the execution time of PCD, seed points
are defined only at edges that have not yet been classified
as crack pixels and whose gray level is below γs. Fur-
thermore, not all the edges are considered for starting the
percolation, but only those at image places over a regular
grid where the gap between points is ∆ pixels. To ensure
that the relevant edges are always considered, a dilation
step follows the edge detection, where dilation thickness
is in accordance with ∆.

A flowchart of the complete algorithm can be found
in Figure 2 and pseudocode is presented as Algorithm 1.
This flowchart does not comprise a pre-processing step
that has been incorporated to reduce the noise of the im-
age. Due to its excellent properties for preserving relevant
edges, this step is implemented as a Bilateral filter [39]
(see the Appendix for more details).

Regarding the differences with [47], in Yamaguchi’s
crack detector:

(1) all pixels are candidate to be seed pixels,
(2) only the seed pixel is labeled as crack once the per-

colation finishes,
(3) it uses an acceleration parameter that allows the per-

colation of lighter areas and
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Table 1: Defect detection techniques

Approach Particular technique References

General image
processing

Model-based texture analysis [4–6, 26, 34]

Filtering

FIR [22]
Gabor filters [40]

Wavelets [33, 36]
Multi-stage non-linear [44]

Morphology [15, 37, 47, 48, 51]
Edge-based (thresholding + thinning) [12, 16]

Characterization of
defect geometrical
structure

Bayesian reasoning over a network [7]
Tortuosity [49]

Others [2, 3, 29, 31, 35]

Learning-based

Neural Network (NN) [10, 23, 25]
Backward propagation Neural Network (BPNN) [50]

Convolutional Neural Network (CNN) [28]
Neural Fuzzy Interference Network (NFIN) [8]
Self-Organizing Neural Network (SONN) [11]

Statistical mixture model [45]
Support Vector Machine (SVM) [17, 23, 25]

Self-Organazing Map (SOM) [19]
Genetic Algorithm [28, 50, 51]

Logistic Regression Tree [21]

Figure 2: PCD algorithm flowchart
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(4) it is not required that the average gray level of the
percolated region is below a certain threshold.

As a result of these differences, PCD has become faster
than Yamaguchi’s for crack detection in metal surfaces.

3.2. Performance of PCD

The performance of PCD algorithm depends on the par-
ticular setting of the percolation parameters as well as on
the size of the gap left between percolations. As a gen-
eral rule during the selection of the final parameter val-
ues, false negatives have been penalized more than false
positives. The elapsed time during the entire process has
been considered an important factor as well, in the sense
of trying to reduce it as much as possible.

Regarding specific parameters, εN and εM , related with
the expected elongation of cracks, and the gray level
thresholds γs and γavg, have all been tuned so as to re-
duce as much as possible the number of false positives
over all the test images, while the value for N and M, re-
lated with the size of the percolation boundaries, has been
determined using the mean value of Pratt’s FOM mea-
sure [30] calculated for all the test images.

Once all the parameters have been configured, the
detector performance has been assessed with regard to
ground truth by means of the false positive and false neg-
ative rates, respectively FP / (FP+TN) and FN / (FN+TP).
After analyzing 2244960 pixels from 15 different images,
the global rates result to be 2.31% for false positives and
55.60% for false negatives. The false positive rate is not
null because of some dark narrow areas, e.g. shadows,
that sometimes are classified as cracks. The high value
obtained for the false negative rate is due to the different
intensity levels that can be found inside a specific crack:
i.e. the percolation process tends to tag only the darkest
areas inside the crack, not the lightest ones. Thus, there
can be a number of pixels initially labelled as belonging
to a crack in the ground truth which finally are not marked
by the algorithm.

In order to avoid the effect of ground truth subjectivity
over the false negative rate, we decided to make use of an-
other set of performance figures not so much affected by
the reduced number of image pixels potentially involved
in a crack. In this regard, performance has also been an-
alyzed from the point of view of the false negative and
false positive percentages, respectively FP / #pixels and

Algorithm 1 Percolation-based Crack Detector (PCD)
Require: Bilateral-filtered gray-scale image I is avail-

able. No pixel is labelled as a crack
1: Compute the edge map for I using Sobel operator
2: for all pixels p = I(u, v) such u = bu/∆c∆ and v =

bv/∆c∆ do
3: P = Ø {Currently percolated area}
4: if p is darker than γs and p is an edge and p is

not labelled as a crack then {new seed definition}
5: P = P ∪ {p }
6: T = gray level of p
7: while P does not reach N ×N boundary do {first

percolation process}
8: for all neighbours q of P do
9: if q is darker than T then

10: P = P ∪ {q}
11: end if
12: end for
13: if any non-percolated neighbour is darker than

T then {force percolation}
14: d = darkest neighbour of P
15: P = P ∪ {d}
16: end if
17: end while
18: while P does not reach M × M bound-

ary and there are neighbours to visit and
Elongation (P) > εN do {second percolation pro-
cess}

19: for all neighbours q of P do
20: if q is darker than T then
21: P = P ∪ {q}
22: end if
23: end for
24: end while
25: if Elongation (P) > εM then
26: if the average gray level of P is darker than

γavg then
27: Label all the pixels from P as a crack
28: end if
29: end if
30: end if
31: end for
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FN / #pixels. Observe that these performance figures are
not affected by the percentage of pixels labelled as corro-
sion since the number of missclassifications are both di-
vided by the same amount of cases (i.e. pixels).

The global percentages result to be 2.29% for false pos-
itives and 0.47% for false negatives. Percentages for some
of the images are additionally shown in Table 3. As can
be observed in Table 3(a), false positive percentages are
not null and its value is quite similar to the false posi-
tive rate since most of pixels in the images are not from
cracks. False negative percentages, as can be seen in Ta-
ble 3(b), are neither null due to the non-percolation of the
lightest pixels of cracks, but its value does not increase
so much as the false negative rate since the percentage is
calculated taking into account all the pixels of the image,
not only crack pixels.

Furthermore, if entire cracks are considered as entities
and it is assumed that the labelling of a single pixel within
a crack is useful, then the corresponding percentage FN
cracks / #cracks turns out to be zero since all the cracks
are always detected (see Table 3(c)). In this regard, it is
important to remember that this algorithm is intended to
be used to facilitate the visual inspection of vessel images
carried out by a supervisor and, thus, informing about the
existence of a crack in an image area is considered worth
enough even if the crack is not completely marked.

Table 4 shows crack detection running times for some
of the test images, together with their sizes. As can be
seen, the elapsed time does not increase with the number
of pixels since it depends more on the number and size of
cracks, and edges in general, that are detected.

Some images and the corresponding output are shown
in Figure 3. It can be observed that all the cracks that
can be detected by means of visual inspection are detected
by PCD as well. The values assigned to the algorithm
parameters are provided through Table 2.

4. Colour-based Corrosion Detector

4.1. Description of the algorithm

The corrosion detection approach has been built around
a supervised classification scheme. The classifier makes
use of a codeword dictionary computed during a previ-
ous learning stage. Each codeword consists of stacked
histograms for the red, green and blue colour channels

Table 2: Values taken by the PCD parameters

N 41
M 41
εM 0.3
εN 0.3
γs 0.5
γavg 0.4
∆ 5

of image patches containing different kinds of rust. This
structure gives the name to the algorithm which is called
Color-based corrosion detector, CCD from now on.

To reduce the dimensionality and the sensitivity to
noise, intensity values are downsampled from 256 to 32
levels, and, thus, a codeword consists of 96 components.
As can be observed in Figure 4, this codeword does not
preserve the spatial arrangement of intensity levels nor the
relationship between colour channels for the same pixel.

Samples from different kinds of corrosion have been
gathered for training, and 30 different images containing
corroded metallic surfaces have been used for this pur-
pose. In order to make the dictionary more compact,
codewords have been clustered, independently for every
kind of rust considered, by means of the well-known K-
means algorithm [38]. The size of the dictionary for every
type of corrosion, i.e. the number of models, is therefore
given by the number of clusters selected during the clus-
tering process.

Once the dictionary has been built, the corrosion de-
tector proceeds scanning the image and classifying every
image patch as affected by corrosion or not. To this end,
the current patch codeword is built and compared with the
models of the dictionary by means of the Bhattacharyya
distance D = − log(1 − B), with B given by Equation 2:

B =
∑

xεX

√
pc(x)pm(x) , (2)

where X refers to the histograms domain and pc and pm

are histograms from, respectively, the codeword and the
model.

A patch is labelled as corroded as soon as a model is
found in the dictionary such that D < τD. Therefore, the
approach does not intend to determine which is the closest
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Figure 3: (1st column) Test images and (2nd column) detected cracks

Table 3: (a) Crack pixel FP percentages. (b) Crack pixel FN percentages. (c) Crack FN percentages.

(a) 0.15 2.01 2.58 0.65 1.50 0.76 2.76 0.20 1.81 5.50
(b) 0.02 0.20 0.97 0.42 0.91 0.08 0.20 0.21 1.02 1.57
(c) 0 0 0 0 0 0 0 0 0 0
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Table 4: Crack inspection elapsed time for different image sizes

Pixels 120000 120000 144000 144000 158880 162720 172800 172800 177120
Time (ms) 139 438 189 67 816 661 353 117 130

Figure 4: Codeword consisting of red, green and blue stacked histograms

model, but whether the patch is close enough to any model
of corrosion. As a consequence, an important reduction in
the computation time is obtained.

An additional stage has been introduced before this
colour-based classification process in order to improve the
classification and reduce the number of codewords to be
compared with the dictionary.

This stage is based on the premise that a corroded area
presents a rough texture. Roughness is then measured as
the energy of the symmetric gray-level co-occurrence ma-
trix (GLCM), calculated for downsampled intensity val-
ues between 0 and 31, for a given direction α and distance
d [38]. The energy is obtained by means of Equation 3:

E =

31∑

i=0

31∑

j=0

p(i, j)2 , (3)

where p(i, j) is the probability of the occurrence of gray
levels i and j at distance d and orientations α or α + π.
Patches with an energy lower than a given threshold τE ,
i.e. exhibit a rough texture, are finally candidates to be
more deeply inspected.

The flowchart for the complete algorithm is shown in
Figure 5 and its pseudocode can be found as Algorithm 3.
The pseudocode for codewords dictionary generation can
be found as Algorithm 2.

Algorithm 2 Codewords dictionary generation (CCD)
Require: Ground truth images have been generated and

different kinds of corrosion have been distinguished
1: for all different kinds of corrosion do
2: for all images I with this kind of corrosion do
3: for all patches Π of I do
4: if Π is labelled as corrosion in the ground

truth image then {generate codeword}
5: Compute red histogram
6: Compute green histogram
7: Compute blue histogram
8: Stack the three histograms together
9: Save codeword

10: end if
11: end for
12: end for
13: Cluster codewords to K models using K-means
14: end for
15: Save models dictionary

9



Figure 5: CCD algorithm flowchart

Algorithm 3 Colour-based Corrosion Detector
Require: RGB image and gray-scale image are avail-

able. Codewords dictionary has been already gener-
ated. No patch is labelled as corrosion

1: Load corrosion dictionary
2: for all patches Π do
3: e = Energy (Π)
4: if e < τE then {Generate the codeword}
5: Compute red histogram
6: Compute green histogram
7: Compute blue histogram
8: Stack the three histograms together
9: while there are more models in the dictionary

and the patch has not been labeled as corrosion
do

10: Calculate the Bhattacharyya distance D
11: if D < τD then
12: Label Π as corrosion
13: end if
14: end while
15: end if
16: end for

4.2. Performance of CCD

To analyze the performance of CCD algorithm, the
performance of the colour stage has been assessed and
then compared with the results obtained after adding the
roughness stage, in order to measure the improvement
achieved by this filter.

Regarding the configuration of colour stage, the patch
size has been set to 15 pixels. This value determines the
amount of information contained in a patch as well as
the necessary time to obtain the codeword from an image
patch and to compare it with models from the dictionary.
Thus, this parameter also plays a role in the running time.
Furthermore, it has to be noticed that the dictionary size,
i.e. the number of models in the dictionary, is also a deter-
minant factor in terms of time: the more models are in the
dictionary, the more comparisons have to be performed
for the patches that actually are not affected by corrosion.

As for the dissimilarity threshold τD, a large value gives
rise to a reduction in the execution time because image
patches affected by corrosion are labelled as such in a
few comparisons with the models stored in the dictionary.
Nevertheless, this also decreases the performance of the
algorithm because the number of false positives grows.
The final value for τD has been selected so as to reduce as
much as possible the misclassifications.

As well as for the PCD crack detector, quantitative per-
formance results have been obtained by defining first the
ground truth for every test image by visual inspection, and
comparing next the reference with the algorithm output.
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Since the corrosion detector output is in terms of image
patches instead of image pixels, the ground truth has also
been transformed to the patch domain. Since the ground
truth patches labelling admits a number of possibilities,
the following strategies have been considered:

label a ground truth patch as corroded if the
number of pixels labelled as corrosion in the
ground truth are

1. at least 1,
2. at least 25% the patch size,
3. at least 50% the patch size,
4. at least 75% the patch size, or
5. all the pixels of the patch.

False positive (FP / (FP+T N)) and false negative rates
(FN / (FN + T P)) for different strategies have been cal-
culated and are shown in Figure 6. These misclassifica-
tion rates come from the analysis of 7384 patches from
11 different images. As happened with the crack detec-
tor, the values obtained for the false negative rate are very
high due to the miss detection of some patches labelled
as corrosion in the ground truth images. For this reason,
misclassification percentages have been used instead of
the aforementioned rates, since these indicators are not
affected by the percentage of the image that is corroded.
False positive (FP / #patches) and false negative percent-
ages (FN / #patches) are also shown in Figure 6.

After observing the obtained misclassification percent-
ages, the roughness filter was incorporated, its parameters
were tuned and its effect on the global algorithm perfor-
mance was evaluated.

To configure the parameters of the roughness stage
some considerations have been taken into account. The
value for the energy threshold τE affects the algorithm
performance in terms of computation time as well as re-
ducing the number of false positives, since all patches
with a high energy level are discarded and only those with
a low value become input for the color checking step. Sev-
eral experiments have been performed considering differ-
ent values for d and α when calculating the GLCM and,
consequently, its energy level. However, no significant
differences have been observed among the output values,
and so the parameter values have been set to d = 5 (pixels)
and α = 0 (horizontal direction).

Figure 7 shows rust detection outputs for the same in-

Table 5: Used values for CCD parameters

τE 0.05
τD 0.07

put image using different energy thresholds. As can be
observed, τE can be tuned to decrease false positives and
just allow the detection of the most significant corroded
areas, while decreasing the computation time.

Once the roughness stage was configured, the perfor-
mance of the CCD algorithm was assessed. Figure 8
shows the false positive and false negative percentages
obtained after executing the algorithm using the same in-
put images used for colour stage. As can be observed,
the incorporation of the roughness filter has dramatically
reduced the false positive percentage, while the effect
on the false negative percentage has not been so impor-
tant. Comparing the different patch labelling strategies,
the number of incorrect classifications in any case is re-
duced: below 10% for the false positives and around 18%
for the false negatives. Besides, the number of false posi-
tives grows very slightly with regard to the percentage of
pixels that are required to be corroded for the patch to be
considered as corroded, what indicates that the number of
false alarms is low and independent of how the patches
have been labelled. Regarding the number of false nega-
tives, patches really affected by corrosion are always de-
tected and only uncertain cases are left unidentified.

Similarly to what happened with the PCD, the process-
ing time for the corrosion classifier depends on the per-
centage of image area that is corroded or that presents a
low energy level. Some results can be found in this regard
in Table 6.

Figure 10 shows detection results for some images. In
those cases, the algorithm was configured to detect only
the image areas most significantly affected by corrosion,
assigning to the parameters the values shown in Table 5.

5. Weak-classifier Colour-based Corrosion Detector

5.1. Description of the algorithm

This section presents a second corrosion detection al-
gorithm. As well as CCD, the new classifier has been
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Figure 6: Misclassification rates and percentages for different ground truth patch labelling strategies to asses the color stage performance of CCD

Table 6: Corrosion inspection elapsed time for different image sizes (CCD)

Pixels 120000 120000 144000 154560 162720 172320 172800 172800 177120
Time (ms) 49 47 151 74 61 117 41 277 33
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τE = 0.5 τE = 0.2
exec. time = 175 exec. time = 99

τE = 0.1 τE = 0.05
exec. time = 68 exec. time = 46

Figure 7: Corroded areas detected by CCD for different τE values and corresponding processing times (ms)
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Figure 8: Misclassification percentages with and without the roughness filter (CCD)
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built around a cascade scheme, although the two stages of
the new corrosion detector can be considered as two weak
classifiers. Thus, it will be called Weak-classifier Colour-
based Corrosion Detector, WCCD from now on. The idea
is to chain different fast classifiers with poor performance
in order to obtain a global classifier attaining a much bet-
ter global performance. To this end, each weak classifier
takes profit from different features of the items to classify,
reducing the number of false positive detections at each
stage. For a good global performance, the classifiers must
present a false negative percentage close to zero.

The first stage of the cascade is the roughness stage ex-
plained in section 4 for CCD. Remember that this stage
returns the image patches which present a rough texture,
i.e. have an energy lower than a given threshold τE .

The second stage operates over the pixels of the patches
that have passed the roughness stage. Unlike the first, this
stage makes use of the colour information that can be ob-
served from corroded areas. More precisely, the classifier
works over the Hue-Saturation-Value (HSV) space after
the realization that HSV-values that can be observed in
corroded areas are confined in a bounded subspace of the
HS plane. Although the V component has been observed
neither significant nor necessary to describe the color of
corrosion, it is used to prevent the well-known instabili-
ties in the computation of hue and saturation when color is
close to white or black. In that case, the pixel is classified
as non-corroded.

A training step is performed prior to the application of
this second stage of the corrosion classifier. In this case,
training consists of building a bi-dimensional histogram
of HS values for image pixels known to be affected by
corrosion in the training image set. The resulting his-
togram is subsequently filtered by zeroing entries whose
value is below 10% the highest peak. By way of example,
Figure 11 shows an HS histogram downsampled between
0 and 31, calculated using 9 different images with corro-
sion.

The classifier proceeds as follows for every 3-tuple
(h, s, v):

(1) pixels close to black, v < mV , or white, v > MV∧s <
mS , are labeled as non-corroded, and

(2) for the remaining pixels, the HS histogram is con-
sulted and the pixel is labelled as corroded if
HS (h, s) > 0,

Figure 9: Venn diagram for corrosion definition

for given thresholds mV , MV and mS .
Figure 9 shows a Venn diagram that depicts the corro-

sion definition used by WCCD. Notice that the stages of
the cascade cannot be swapped since they do not work
with the same kind of entities: while the second stage
works at the pixel level, the first stage operates over
15 × 15 -pixel image patches since it depends on tex-
ture, which necessarily involves a pixel neighborhood.
Figure 12 shows the flow diagram of WCCD. The pseu-
docodes for the dictionary corrosion color generation and
WCCD corrosion detection algorithm can be found as Al-
gorithms 4 and 5.

Algorithm 4 Corrosion color dictionary generation
(WCCD)
Require: Ground truth images have been generated

1: for all images C do
2: for all pixels p do
3: if p is labelled as corrosion in the ground truth

image then
4: Insert that pixel in HS histogram
5: end if
6: end for
7: end for
8: for all bins b of the histogram do
9: if b is lower than 0.1 × max(HS) then

10: b = 0
11: end if
12: end for
13: Save the histogram

5.2. Performance of WCCD
The performance of WCCD depends on the perfor-

mance of its different stages. Regarding the roughness
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Figure 10: (1st column) Test images and (2nd column) corroded areas detected by CCD
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Figure 11: Hue-Saturation histogram for the colour stage of WCCD

Figure 12: WCCD algorithm flowchart
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Algorithm 5 Weak-classifier Colour-based Corrosion De-
tector (WCCD)
Require: HSV image and gray-scale image have been al-

ready obtained. HS histogram has been already gen-
erated. No pixel is labelled as corrosion

1: for all patches Π do
2: e = Energy (Π)
3: if e < τE then
4: for all pixels p = (h, s, v) from Π do
5: if v > mV and (v < MV or s > mS ) then {p

is neither black nor white}
6: if HS (h, s) ≥ 0.75HS then {where HS is

the highest peak of the HS histogram}
7: Label pixel as corrosion in red
8: else if HS (h, s) ≥ 0.5HS then
9: Label pixel as corrosion in orange

10: else if HS (h, s) ≥ 0.25HS then
11: Label pixel as corrosion in green
12: else if HS (h, s) ≥ 0 then
13: Label pixel as corrosion in blue
14: end if
15: end if
16: end for
17: end if
18: end for

stage, the energy threshold τE and the parameters d and
α play exactly the same role as for CCD, thus they have
been configured to the same values.

Figure 13 provides classification outputs for the same
input image using different energy thresholds. As hap-
pened with CCD, τE can be tuned to decrease false posi-
tives and just allow the detection of the most significant
corroded areas. In the images, a pixel labeled as cor-
roded is color-coded to indicate the probability of success-
ful classification. To be more precise, the color depends
on the height of the corresponding histogram bin in the
following way:

• red if HS (h, s) ∈ [0.75HS, 1.00HS],
• orange if HS (h, s) ∈ [0.50HS, 0.75HS],
• green if HS (h, s) ∈ [0.25HS, 0.50HS] and
• blue if HS (h, s) ∈ [0.10HS, 0.25HS]

where HS is the highest peak in the HS histogram.
The parameters mV , MV and mS have been set to pre-

vent the instabilities of h and s values from affecting the
pixel classification. Using 8-bit HSV values, the mini-
mum value mV has been set to 50, as well as the minimum
saturation mS . The maximum value MV has been set to
200.

In order to evaluate the performance of roughness
stage, misclassification percentages have been obtained
for stand-alone configuration, i.e. without chaining any
other stage behind. Figure 14 compares the false pos-
itive percentage (FP / #patches) and false negative per-
centage (FN / #patches) obtained after the execution of
the roughness stage with the percentages obtained with
CCD, that have been already presented in Figure 8. As
can be seen, the false positive percentage is always higher
for roughness stage, while false negative percentage is al-
ways lower. These results are easy to explain since the
roughness stage is also the first stage of CCD.

The performance of the complete corrosion detector
has been determined after combining the roughness stage
with the colour stage and analyzing the same 7384 patches
used to asses the performance of CCD. The process car-
ried out to perform this assessment has entailed the im-
plementation of different techniques to filter the HS his-
togram and a posterior comparison among the alternatives
with regard to the generalization capability of the result-
ing classifier. The indicators used for this comparison
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Figure 13: Corroded areas detected by WCCD for different energy threshold values
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Figure 14: Misclassification percentages for roughness stage in comparison with the ones obtained with CCD

18



have been once more the false positive rate (FP / (FP +

T N)), the false negative rate (FN / (FN + T P)), the false
positive percentage (FP / #pixels) and the false negative
percentage (FP / #pixels). Nevertheless, as happened be-
fore with CCD, the uncertainty during ground truth def-
inition has derived in high false negative rates, thus mis-
classification percentages have been considered better in-
dicators of the algorithm performance.

Downsampling the histogram to 32 levels for hue
and saturation has been the first filter considered, which
merely groups bins with similar hue-saturation values. As
can be seen in the first and second rows of Table 7, this
filter has resulted a considerable improvement in compar-
ison with the original 256×256 HS histogram, thus it has
been considered as the reference for comparing with the
next filtering strategies.

More specifically, two more attempts have been per-
formed in order to reduce the false negative percentage
while preserving the false positive percentage. On the
one hand, the Parzen windows method [38] has been ap-
plied to the original 256 × 256 histogram using the two-
dimensional Gaussian kernel shown in Equation 4:

G(x, y, σ) =
1

2π σ2 e
−1

2

 (x − µx)2

σ2 +
(y − µy)2

σ2


, (4)

where µxandµy are the hue and saturation values for the
neighbourhood center, x and y are the values for a nearby
sample, and σ is the standard deviation. The algorithm
performance has been assessed filtering the histogram us-
ing different values for σ. Best misclassification rates and
percentages are shown in the third row of Table 7, which
correspond to σ = 12.

On the other hand, a Bilateral filter [39] has been ap-
plied to the original 256× 256 histogram, considering the
bins height as the intensity values of an image. This ap-
proach filters the histogram using a kernel consisting of
two Gaussians, one for the spatial domain and another for
the range domain (see the Appendix for more details). Af-
ter the different experiments carried out, the best perfor-
mance has been obtained for σspatial = 15, σrange = 1 and
a kernel size of 30 pixels. The fourth row of Table 7 pro-
vides the resulting performance values. The resulting his-
tograms for the different filters can be found in Figure 15.
By way of conclusion, it seems the approach based on the
bilateral filter is the one providing best results, although

it is true the different strategies lead to a final similar per-
formance. The bilateral filter has thus been selected for
being part of WCCD.

Examples of final classification outputs for WCCD
are provided in Figure 16. Among the different images
shown, special mention is done for the image in the first
row, where a specific kind of corrosion called pitting, af-
fecting a very reduced fraction of the image, is success-
fully detected.

Regarding execution times, WCCD took between 7 and
15 ms for images ranging from 120.000 to 172.800 pixels.
A comparison with the execution times of CCD can be
found in Table 8. A 7.76x speed up has been observed
after testing with 11 different images.

To sum up, comparing the performance of both corro-
sion detectors, the method explained in this section has
presented false positive and false negative percentages of
the same order as the percentages obtained with the first
method. Nevertheless, the execution time has been con-
siderably reduced. For these reasons, one can conclude
stating that WCCD is preferable to CCD.

6. Guided Percolation-based Crack Detector

6.1. Description of the algorithm

In order to improve the performance of PCD, described
in Section 3, a new detector is proposed that combines
WCCD with the percolation-based strategy of PCD. The
rationale behind this approach lies on the observation that
most of the cracks in metallic surfaces appear in corroded
areas. Therefore, a successful corrosion detection can be
used to guide the localization of cracks in the image. This
combination is called Guided-PCD or GPCD from now
on.

WCCD has been selected for taking part in the com-
bination since it presents an acceptable performance and
a reduced execution time. Furthermore, WCCD works at
the pixel level, instead of at the patch level, what facili-
tates the combination with the crack detection algorithm.

To implement the guided crack detection, the initial
condition that starts a percolation has been slightly modi-
fied so that it starts at a given seed pixel only if it has been
labeled as corroded. The pseudocode for this improved
version can be found as Algorithm 6.
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Table 7: Misclassification measures for different HS histograms (WCCD)

FP rate FN rate FP percentage FN percentage
Original (256 bins) 0.94 91.22 0.80 13.56

Downsampled to 32 bins 11.50 41.02 9.78 6.10
Using Parzen-window 10.85 40.31 9.23 5.99
Using Bilateral filter 11.51 39.45 9.80 5.86

Using 256 bins Downsampled to 32 bins
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Figure 15: HS histograms resulting from the different filtering strategies (WCCD)
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Figure 16: (1st column) Test images and (2nd column) corroded areas detected by WCCD

Table 8: Comparison between elapsed times using CCD and WCCD

Pixels 120000 120000 144000 154560 162720 172320 172800 172800 177120
CCD (ms) 52 42 153 66 56 122 41 196 33

WCCD (ms) 8 7 10 11 10 12 10 15 10
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Algorithm 6 Guided Percolation-based Crack Detector
(GPCD)
Require: Bilateral-filtered gray-scale image I is avail-

able. No pixel is labelled as a crack
1: Call to WCCD (Algorithm 5)
2: Compute the edge map from I using Sobel operator
3: for all pixels p = I(u, v) such u = bu/∆c∆ and v =

bv/∆c∆ do
4: if p is darker than γs and p is an edge and p is not

labelled as a crack and p is labelled as corroded
then {new seed definition}

5: Proceed as in Algorithm 1, lines 4-29
6: end if
7: end for

6.2. Performance of GPCD

Figure 17 provides some classification outputs for the
unguided and guided versions of the crack detector. As
can be observed, the computation time falls below 50%
for GPCD with regard to PCD. In fact, after testing over
15 different images, a 3.13x speed up has been observed
when using the guided version. Some values in this re-
gard are shown in Table 9. Moreover, it is also worth
observing that the time reported for guided detection does
include the execution of the WCCD corrosion detector.
The improvement in terms of time is thus even higher.

A second and very important enhancement that is ob-
tained by means of the guidance is the reduction of the
false positive detection rate, and consequently the im-
provement of the classifier reliability. The values for the
false positive and false negative percentages are 0.72%
and 0.57%, respectively. Comparing with the percent-
ages obtained without guidance, 2.29% and 0.47%, the
improvement is obvious.

As happened with all other detectors presented in
this report, the uncertainty defining ground truth images
causes a high false negative rate (67.20%), while false
positive rate is similar to the false positive percentage
(0.73%).

As can be seen in Figure 17, both PCD and GPCD de-
tect all the cracks from the images but the unguided ver-
sion also marks other elongated, narrow and dark zones,
e.g. shadows. GPCD, however, prevents the percolation
of some of these false positives since corrosion has not

been detected there. Tables 2 and 5 indicates the param-
eter values used to obtain the results shown in Figure 17
for, respectively, PCD/GPCD and WCCD.

7. Conclusions

Several defect detection algorithms for support in ves-
sel hull inspection have been presented in this report. On
the one hand, a crack detection method based on a perco-
lation idea, PCD, has been introduced and its performance
has been observed in the sense of being able to detect all
the cracks in the test images. Nevertheless, shadows and
other crack-like collections of pixels were misclassified,
increasing the false positive percentage.

On the other hand, two different corrosion detection
algorithms have been introduced. The first one, CCD,
is based on a supervised classification method that takes
profit from the distribution of color in corroded areas, and
has been significantly improved with the addition of a pre-
vious decision stage based on a texture roughness crite-
rion. The second corrosion detection algorithm, WCCD,
has been built around a weak classifiers approach, separat-
ing the spatial and colour analysis in two different stages.
Both algorithms (CCD and WCCD) have presented good
performance, with similar misclassification percentages,
but WCCD performs the detection more than seven times
before than CCD.

As an additional contribution, WCCD has been used
to improve the performance of PCD. The results obtained
prove that the guided approach, GPCD, reduces more than
three times the computation time with regard to the un-
guided version, while the number of false positive de-
tections is also reduced, and the classifier reliability in-
creased.

Better results are expected for all the algorithms pro-
posed by controlling the imaging process. If the pose
and distance of the camera respect to the inspected sur-
face could be controlled, the crack detection algorithms
parameters could be tuned for cracks of a specific size, as
well as the patch size could be adjusted for improving the
corrosion detection algorithms performance.

As for future work, WCCD is planned to be enhanced
by means of an Adaptative Boosting (AdaBoost) [38]
scheme to chain different weak classifiers in a more
grounded way. Before each stage, this method computes a
weighting distribution to give emphasis to the incorrectly
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Figure 17: Cracks detected by PCD (1st column) and GPCD (2nd column)
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Table 9: Comparison between elapsed times using PCD and GPCD

Pixels 120000 120000 144000 144000 157440 158880 162720 172800 177120
PCD (ms) 140 412 190 68 182 795 656 342 111

GPCD (ms) 63 182 47 33 50 37 104 159 58

classified samples of previous stages. This strategy is suc-
cessfully used by the Viola-Jones classifier [24, 42, 43]
which is able to robustly detect complex structures, e.g.
faces, in real-time.

Another research line to be investigated is around the
concept of saliency [20]. Considering corrosion and
cracks as anomalies over metallic surfaces, saliency maps
turn out to be relevant tools to improve their detection.
Furthermore, some other works, e.g. see [27, 46], gives
other ways to work with corrosion that could be useful
for that research.
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Appendix: The Bilateral filter

The Bilateral filter is a simple filter that is very used
in image processing for noise reduction while preserving
the edges that appear in the image. It consists in a com-
bination of two Gaussian filters. One works in the spatial
domain, thus takes into account the distance between a
pixel and its neighbours; the other one works in the range
domain since it takes into account the difference between
the value (e.g. intensity) of a pixel and the values of its
neighbours.

Ib f
p =

1

Wb f
p

∑

qεS

Gσs (‖ p − q ‖)Gσr (| Ip − Iq |)Iq

where

Wb f
p =

∑

qεS

Gσs (‖ p − q ‖)Gσr (| Ip − Iq |)

Gσ(x) = e−
x2

2σ2

and S is set of pixels involved in the convolution.
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