
A Reconfigurable Framework to Turn a MAV
into an Effective Tool for Vessel Inspection

Francisco Bonnin-Pascuala,∗, Alberto Ortiza, Emilio Garcia-Fidalgoa, Joan P. Company-Corcolesa

aDepartment of Mathematics and Computer Science, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de
Mallorca, Spain

Abstract

Vessels constitute one of the most cost effective ways of transporting goods around the world. Despite the efforts,
maritime accidents still occur, with catastrophic consequences. For this reason, vessels are submitted to periodical
inspections for the early detection of cracks and corrosion. These inspections are nowadays carried out at a great cost.
In order to contribute to make ship inspections safer and more cost-efficiently, this paper presents a novel framework
to turn a Micro-Aerial Vehicle (MAV) into a flying camera that can virtually teleport the human surveyor through the
different structures of the vessel hull. The system architecture has been developed to be reconfigurable so that it can
fit different sensor suites able to supply a proper state estimation, being at the same time compatible with the payload
capacity of the aerial platform and the operational conditions. The control software has been designed following the
Supervised Autonomy paradigm, so that it is in charge of safety related issues such as collision avoidance, while the
surveyor, within the main control loop, is supposed to supply motion commands while he/she is concentrated on the
inspection at hand. In this paper, we report on an extensive evaluation of the platform capabilities and usability, both
under laboratory conditions and on board a real vessel, during a field inspection campaign.

Keywords:
Reconfigurable Framework, Micro-Aerial Vehicle (MAV), Vessel Inspection, Supervised Autonomy, Control
Architecture, Sensor Fusion

1. Introduction

The importance of maritime transport for the interna-
tional commerce is unquestionable. Different types of ves-
sels are used depending on the kind of product that is
to be carried: oil tankers, bulk carriers, container ships,
etc. All of them can be affected by different kinds of
defects that may appear due to several factors, such as
structural overload, problems in the vessel design, the use
of sub-standard materials/procedures, normal decaying of
the metallic structures in the sea, etc. Regardless of its
cause, cracks and corrosion are the two main defective sit-
uations that appear in vessel structures. Their presence
and spread are indicators of the state of the vessel hull,
so that an early detection can prevent major problems.
For this reason, Classification Societies impose periodical
inspection to assess the structural integrity of vessels.

Nowadays, to perform the inspection of a vessel, this
must be situated in a dockyard (and sometimes in a dry-
dock) where high scaffoldings are installed to allow the sur-
veyors to reach all the plates and structures of the vessel.
This procedure, together with the lost-opportunity costs

∗Corresponding author: Tel.: +34-971-172-565;
Email address: xisco.bonnin@uib.es (Francisco

Bonnin-Pascual)

due to the fact that the ship is not being operated, give
rise to high expenses for the ship owner/operator. Fur-
thermore, during this process, vessel surveyors may need
to reach high-altitude areas or even enter into hazardous
environments, putting at risk his/her own integrity.

In line with the aforementioned, the EU project IN-
CASS1 (finished in 2017) pursued to develop new tech-
nological tools with the aim of contributing to the re-
engineering process of vessel inspection. Among them, this
paper focuses on an aerial robotic tool that has been devel-
oped for the visual inspection of the inner vessel hull. The
idea behind this device is to allow the surveyor to perform
a proper inspection from a safe and comfortable position.

Regarding the latter, the robotics literature contains a
number of contributions for vessel hull inspection involv-
ing robotic platforms. The majority of the existing ap-
proaches make use of underwater vehicles to inspect the
submerged part of the hull. Some of them are based on the
use of Remotely Operated Vehicles (ROV) (see for exam-
ple [18, 24]), while other approaches are based on the use of
Autonomous Underwater Vehicles (AUV) which estimate
their position with regard to the vessel hull using different
devices and/or techniques. Apart from solutions based
on free-floating AUVs (see for example [12, 26]), in this

1www.incass.eu

Preprint submitted to Robotics and Computer-integrated Manufacturing September 24, 2018

www.incass.eu


group we can also find some approaches of hull-crawling
vehicles which are attached to the hull by means of suc-
tion (see [1, 23]). The robotics literature also reports on
a reduced number of robotic platforms that operate mag-
netically attached to the vessel hull, what makes feasible
the inspection above the water line (e.g. [3, 13]).

To the best of the authors’ knowledge, the only contri-
butions about flying robots specifically devised for vessel
hull visual inspection result from our research. Our first
attempt for vessel visual inspection using a Micro-Aerial
Vehicle (MAV) focused on providing a fully autonomous
platform [4]. This robotic platform led to successful re-
sults in field tests performed in different types of vessels
during the EU project MINOAS2 [11]. Nevertheless, the
usability of this platform was limited due to the way how
inspections had to be performed. To carry out a mission,
this had to be previously specified in a “mission descrip-
tion file” which consisted in a list of waypoints to attain
and actions to perform. Despite this way of operation is
suitable to sweep a vessel surface, e.g. a bulkhead, and
take a picture, for example, every half a meter, it is not
appropriate to make the vehicle attain a specific point in
the vessel structure with unknown coordinates. Further-
more, during the field trials, some surveyors demanded the
capability of flexibly manoeuvring the vehicle with some
kind of remote control. Besides, since this autonomous
system is based on a position control loop, issues in the
position estimate, i.e. due to a malfunction of the laser
scanner used for the perception of the surrounding struc-
ture, may put the platform in trouble or jeopardize the
execution of the inspection mission.

This paper presents a novel approach for the visual in-
spection of vessels which intends to overcome the short-
comings of our previous platform. Results for preliminary
designs of the new MAV can be found in [5], [7] and [25].
This paper focuses however on the next step of design and
development, which consists in a reconfigurable framework
intended to provide an existing MAV with the capabilities
to become an effective and easy to use tool for the ves-
sel inspection task. The resulting system is reconfigurable
in the sense that it can incorporate different sensor suites
depending on the payload capacity of the MAV and the
operational conditions (such as the amount and kind of
illumination or the presence of obstacles, e.g. consider the
case of a cluttered environment). The present paper also
provides an extensive evaluation of the performance and
usability of the robotic device both under laboratory con-
ditions and during a real inspection campaign on board a
real vessel.

The paper is organized as follows: in Section 2, the
system requirements are presented, including the require-
ments needed to accomplish the target tasks and also those
necessary to improve the usability of the platform; Sec-
tion 3 overviews the platform, introducing the key aspects

2www.minoasproject.eu

of the approach and the operating paradigm; Section 4
reviews different sensor suites proposed to estimate the
platform state estimation and perceive the environment; in
Section 5, the control architecture design is detailed; Sec-
tion 6 describes the pipeline that estimates the platform
state from the sensor data; Section 7 provides the details
for the implementation of the MAV; Section 8 reports on
an extensive evaluation of the platform capabilities under
laboratory conditions; Section 9 shows the performance
and usability of the vehicle during inspection missions, in-
cluding results from a campaign on board a real vessel;
and, to finish, Section 10 draws some conclusions on the
work described.

2. System Requirements

A number of requirements have been defined in accor-
dance to the target task. They focus on the design of a
robotic device able to teleport the surveyor through the
different inner and dry structures of the vessel, so that
he/she can appropriately perceive the condition of the hull.
Those requirements can be outlined as follows:

1. the vehicle must allow a close-up view of the inspected
surface,

2. the vehicle must obey the commands indicated by the
user/surveyor,

3. the vehicle must allow reaching the highest structures
of the vessel hull

4. the vehicle must be able to operate inside the vessel
hull, including rather narrow spaces (e.g. inside a
ballast tank), and

5. the vehicle must be able to operate in dark areas (e.g.
inside a ballast tank or a tanker cargo hold, where
daylight can not penetrate).

Additional requirements are defined to increase the us-
ability of the platform and/or to reduce the mental work-
load of the surveyor in charge of the visual inspection:

6. the vehicle must implement self-preservation func-
tions such as prevent collisions with the surrounding
obstacles,

7. the vehicle must be operable by non-expert users who
maybe have never used a robotic device, and

8. the vehicle should provide some autonomous function-
alities to alleviate the inspection task to the surveyor,
especially when performing repetitive operations or
those prolonged in time.

Climbing rovers and robotized cranes, among others,
share with MAVs a potential adequacy for the inspection
task outlined above [20, 30]. Among all three, MAVs ex-
hibit shorter deployment times, what can make it very
interesting for collecting in a fast way relevant amounts
of data that permit the surveyor have a first impression

2

www.minoasproject.eu


about the state of the vessel compartment under consider-
ation. Apart from that, a MAV is typically a small plat-
form that can be introduced virtually in any area of inter-
est inside the vessel, including those parts with exclusively
manhole-sized entry points (typically 800×600 mm), such
as a tanker cargo hold. MAVs are neither affected by sur-
face discontinuities and/or the presence of excessive dust
or rust particles over the structure, what can seriously
jeopardize the navigation/adhesion capabilities of e.g. a
crawler. Finally, reaching the highest points of the struc-
ture can mean almost no effort for a MAV, but can become
non-trivial for a crane or a climber at difficult-to-approach
points. Nevertheless, the other two platforms can certainly
mean a difference when, apart from the visual inspection,
one needs to take e.g. a thickness measurement using a
by-contact probe, including cleaning the surface as a pre-
vious step. This situation is, however, not part of the
requirements enumerated above.

3. System Overview

The aerial robotic tool has been designed to fulfil the
system requirements presented in the previous section. To
this end, the system architecture has been reconsidered
from scratch. Regarding the vehicle configuration, we have
chosen to use a multirotor device. This kind of vehicle, in
its different setups (quadcopter, hexacopter, octocopter,
etc.), has been widely used in the recent years for visual
inspection tasks (see of example [17, 21, 29]). Multirotors
present the advantage that they require simple rotor me-
chanics for flying control. Unlike single and double-rotor
helicopters, multirotors use fixed-pitch blades and the ve-
hicle motion is achieved by varying the relative speed of
each motor to change the thrust and torque that they pro-
duce. Among them, we focus on those which weigh less
than 2 Kg. The reduced size of these MAVs, together
with their capabilities for hovering and Vertical Take-Off
and Landing (VTOL), make them suitable for operating in
confined spaces and close to structures, which is a crucial
feature for being able to achieve close-up visual inspection.

With this aim, the vehicle is equipped with cameras to
take high resolution pictures and videos from the vessel
hull surface. The inspection in dark spaces, such as ballast
tanks or closed cargo holds, is possible thanks to the use
of high power LEDs that illuminate the inspected surface.
All the pictures are tagged with the estimated pose of the
vehicle to perform an effective inspection of the vessel and
to allow revisiting the area if necessary. Pose estimation
issues are explained in the following sections.

Operating a MAV in close proximity to a structure can
be a challenging task due to complex environmental con-
ditions and potentially poor situation awareness of the re-
mote pilot. To reduce the mental workload of the pilot in
these situations it is beneficial to give the vehicle its own
artificial situation awareness. Following this idea, the sys-
tem architecture has been designed around the Supervised
Autonomy (SA) paradigm [10]. This defines a framework

for human-robot interaction which aims at the alleviation
of stress on human users through an appropriate level of
instructions and feedback. In other words, the human user
is not burdened with the complete control of the system,
and hence he/she can concentrate on the task at hand.
The SA framework comprises five concepts:

• Self-preservation, which refers to preserving the plat-
form from anything that can jeopardize its integrity,
such as a collision. The idea is that the required con-
trol issues are addressed by the robot itself.

• Instructive feedback, to provide the user with the same
environment perception capabilities as the robot. For
example, the system can provide the user with images
of what the robot sees ahead, or the distance to the
nearest obstacles at both sides of the robot.

• Qualitative instructions, which are used to command
the robot in an easily understood manner, e.g. “go
ahead until an obstacle is found”.

• Qualitative explanations, to describe to the user what
is happening during the course of a mission using a
language similar to the one employed for the qualita-
tive instructions. For example, the robot can indicate
that is “going forward” or report “obstacle detected”.

• User interface, which is used to display the instruc-
tive feedback and allows the user to issue qualitative
instructions.

To implement the SA framework, our solution has been
designed around two separate agents. On the one hand,
the aerial platform, which is fitted with several sensors and
actuators, is in charge of all the control-related issues to
successfully carry out the specified task. The autonomous
controller is also in charge of the self-preservation of the
platform. On the other hand, the base station is used
by the user/surveyor to indicate the qualitative instruc-
tions to the aerial platform by means of some input de-
vice. At the same time, the base station is used to provide
the user/surveyor with information about the mission’s
state and the MAV’s situation, using instructive feedback
and qualitative explanations. The communication between
both agents is performed via a wireless connection. An
overview of the system can be found in Fig. 1.

The vehicle is fitted with a suitable set of sensors to
allow the platform to properly estimate its state and per-
ceive its environment under the specific operational con-
ditions that arise inside vessels. In particular, the vehicle
can not use GNSS positioning systems due to the lack
of line of sight with satellites. Furthermore, the sensor
suite must include sensors to allow the vehicle operation
in dark spaces, where daylight can not penetrate. Sec-
tion 4 discusses about the different sensors that have been
considered to be installed on-board the MAV.

The autonomous controller comprises a set of behaviours
which are in charge of accomplishing the specified task

3



Figure 1: Overview of the inspection system designed around the
Supervised Autonomy paradigm.

while ensuring the platform self-preservation. For exam-
ple, a behaviour is in charge of moving the platform as
indicated by the user, another prevents collisions with the
surrounding obstacles, another keeps a constant distance
with the inspected surface, etc. The different behaviours
developed are detailed in Section 5.4.

This design introduces the user/surveyor in the posi-
tion control loop, allowing him/her to take the platform
to the desired point while being assisted at all times by the
control software. Furthermore, waypoint navigation is not
used in this design and, hence, position estimation is not
required for the control system. Instead, our approach is
based on a velocity controller, what requires proper speed
estimations.

4. Sensor Suite

The design of our inspection tool requires ensuring accu-
rate estimation of speed (for the control software), as well
as a position estimate (not so critical) to tag the pictures
taken during a flight. A detailed description of the plat-
form state, including the estimated velocity and position,
is provided in Section 5.2.

As mentioned before, the need of flying inside closed
spaces make impossible the use of GNSS systems such as
GPS. Furthermore, the large dimensions of the holds and
tanks inside vessels, together with the presence of traces of
goods or rust particles, make unfeasible the use of motion
tracking systems. Because of that, the vehicle state esti-
mation must rely on on-board sensors. Among them, we
focus on lightweight devices that can be carried by small
UAVs as payload.

All MAVs are normally equipped with an IMU. This
device usually comprises three accelerometers, three gyro-
scopes and a magnetometer. Using these sensors, the IMU
can estimate the accelerations of the vehicle in the three
axes (longitudinal, lateral and vertical), the three angular
velocities around these axes, and the attitude of the plat-
form. Despite they are widely used, IMUs can not be em-
ployed alone to estimate the platform velocity or position.
Linear velocities are sometimes computed by integrating
the accelerations measured with the IMU, but this just

works for a short period of time (maybe a few seconds).
Then, the inexactitudes in the acceleration measure, to-
gether with the effect introduced by the finite sampling
frequency of the sensor, make the velocity estimation de-
generate. For this reason, to obtain a proper velocity or
position estimation, IMU data have to be combined with
information provided by other sensors.

Three different sensor suites that configure the aerial
platform are described next.

Sensor suite 1 This suite is devised for small UAVs
with a very limited payload. It is based on the use of veloc-
ity estimates regarding the floor and/or the front wall (the
wall under inspection). These estimates are obtained using
optical flow sensors which provide the velocity combining a
camera and an ultrasound (US) range sensor. The camera
is used to compute the optical flow while the range sensor
is used to introduce the scale to the flow measures, to ob-
tain speed values, as well as the distance to the wall. Two
additional US range sensors are used to detect the obsta-
cles at both sides of the platform. The height estimation
is performed using an optical range sensor, instead of a US
sensor because of the typically longer range offered by the
former (in particular, longer than the downward-looking
optical flow sensor). Finally, the pose of the platform is
estimated using a forward-looking camera which provides
images to feed a monocular SLAM algorithm. To summa-
rize, the first sensor suite comprises:

• an IMU for attitude estimation,

• two optical flow sensors, comprising a camera and a
US range sensor, pointing forward and downward,

• an optical range sensor looking downward and two US
range sensors, pointing to the left and to the right, and

• a colour camera looking forward.

Since this sensor suite is based on the use of several cam-
eras, it requires a sufficiently illuminated scene together
with the presence of distinguishable points (known as fea-
tures), to allow for a proper estimation of the vehicle mo-
tion and position. This lightweight sensor suite is therefore
not adequate for dark environments.

Sensor suite 2 This is suitable for platforms with a
larger payload. It is based on the use of a laser scanner for
velocity estimation, obstacle detection and position esti-
mation via SLAM. Compared to the first sensor suite, the
optical flow and range sensors are removed, as well as the
forward-looking camera for displacement estimation. The
second sensor suite thus comprises:

• an IMU for attitude estimation,

• a laser scanner, and

• an optical range sensor looking downward.

4



The use of a laser scanner makes feasible the operation
in dark or poorly textured environments, but requires the
presence of, from time to time, changes in the structure,
for a proper estimation of the MAV motion. For example,
this sensor is affected by the so called “canyoning” effect,
i.e. the miss-estimation of the displacement along a corri-
dor or canyon due to multiple feasible matchings between
consecutive laser scans.

Sensor suite 3 This is intended to provide a more
robust system, suitable for flying in a larger variety of en-
vironments. It results from combining the first and second
sensor suites so that both the optical flow sensors and the
laser scanner are used to estimate velocity and position.
The laser scanner is used as the main sensor, while the
information provided by the optical flow sensors allows
for a suitable estimation in non-structured environments
or corridors, preventing miss-estimations such as the ones
produced by the “canyoning” effect. To summarize, this
last sensor suite comprises:

• an IMU for attitude estimation,

• two optical flow sensors, comprising a camera and a
US range sensor, pointing forward and downward,

• a laser scanner, and

• an optical range sensor looking downward.

The different sensor suites will be referred to as SS1, SS2
and SS3 from now on. The way how the data provided
by all the sensors is processed and combined to estimate
the platform state is detailed in Section 6. Notice that
SS2 and SS3 require an additional camera to perform the
visual inspection of the vessel. It is not in any of SS1 to
SS3 since it does not contribute to the platform state.

5. Control Architecture

The control architecture has been designed as a lay-
ered structure, so that each layer corresponds to a dif-
ferent control level. This architecture is shown in Fig. 2.
The lowest layer of the architecture comprises the attitude
and thrust controllers which supply the motors commands,
while the mid-level layer consist of the height and velocity
controllers. These two layers are detailed in Section 5.3.
The high-level layer is in charge of executing the MAV
behaviours module, comprising several robot behaviours.
These behaviours collaborate to provide the middle layer
with proper velocity commands. Notice that the control
software has been designed following the SA paradigm,
so that this last layer is in charge of the platform self-
preservation and the fulfilment of the qualitative instruc-
tions given by the user/surveyor, as explained in Section 3.
A description of all the behaviours and the way how they
interact with each other can be found in Section 5.4.

Figure 2: Control architecture.

Figure 3: Flight control state machine.

Apart from the control layers, the State estimation mod-
ule is in charge of processing and combining all the sensor
data to estimate the platform state. The state estimate
is used by the different control layers as seen in Fig. 2.
The state estimation module is organized as a pipeline, as
detailed in Section 6.

5.1. Flight Stages

Flight control is implemented as a finite state machine
(FSM) that comprises five states: landed, taking-off, flying,
descending and landing. The transitions between states
take place when particular conditions are met. For exam-
ple, the system changes from landed to taking-off when the
user starts the take-off manoeuvre from the user interface.
Then, the motors start running and perform an accelera-
tion ramp to elevate the vehicle from the floor. Some other
transitions do not depend on the user commands but on
sensor data and on the vehicle state. For example, the sys-
tem changes from taking-off to flying when the platform
height is above a certain value or after some time at a high
level of motor thrust. Figure 3 shows the complete FSM.

When the system is in the flying stage, three controllers
are in charge of tracking the speed command in the lon-
gitudinal, lateral and vertical axes. When the speed com-

5



mand in the vertical axis is zero, the height controller is
enabled to provide the suitable command to the vertical
speed controller in order to keep the current height. Fur-
thermore, when the system enters the flying stage for the
first time, an auto-adjustment of the hovering thrust is
performed to stablish the suitable value for the specific
air conditions. Details about the hovering thrust and the
speed/height controllers are provided in Section 5.3.

The landing procedure is split into two stages. When the
user starts the landing manoeuvre, the system changes to
the descending stage. Within this stage, the three speed
controllers are still active and the vertical speed command
is overwritten by a descending speed in order to reduce the
flight height. The longitudinal and lateral commands are
fed with the setpoint indicated by the MAV behaviours
module, as in the flying stage, so that the platform still
obeys the user commands, prevents collisions, etc. When
the platform is close enough to the floor, it changes to the
landing stage, which performs a deceleration ramp of the
thrust and, finally, switches the motors off. The user can
cancel a landing manoeuvre during the descending stage
by starting a take-off manoeuvre. In that case, the system
changes back to the flying stage.

5.2. Platform State

The pose of the aerial tool is determined by its posi-
tion (x, y, z) and orientation (ϕ, θ, ψ) 3. The latter is
given using Euler angles, which are applied in the order
yaw-pitch-roll (Z-Y -X). Linear velocities (ẋ, ẏ, ż) and ac-
celerations (ẍ, ÿ, z̈) are defined with regard to the MAV
body fixed coordinate frame. The same coordinate frame
is used for the angular velocities (ϕ̇, θ̇, ψ̇).

After setting the coordinate frame conventions, the state
of the aerial device can be defined. The height and veloc-
ity controllers, in the mid-level control layer, require the
corresponding estimates of height (z) and linear velocities
(ẋ, ẏ and ż). Furthermore, the velocity controllers also
require the linear accelerations (ẍ, ÿ and z̈) to compute
the roll, pitch and thrust commands, as explained in Sec-
tion 5.3. Similarly, the orientation of the platform (ϕ, θ
and ψ) and the angular velocities (ϕ̇, θ̇ and ψ̇) are required
by the attitude controllers in the low-level control layer to
compute the motor commands.

Regarding the high-level control layer, the MAV be-
haviours module requires the distance to the obstacles sit-
uated below (db), in front (df ) and at both sides of the
platform (dl and dr, for left and right respectively). The
height estimation z is performed with regard to the take-
off location, and may not coincide with the distance to
the nearest obstacle situated below the platform db (see
Section 6 for details).

Finally, the full position of the platform with regard to
some agreed coordinate origin (typically the take-off loca-

3ROS coordinate frame conventions are followed, see www.ros.

org/reps/rep-0103.html

tion) is required to tag the pictures taken during an inspec-
tion mission. Thus, x and y estimates are also required.
The full MAV state is defined in Table 1, indicating which
module or control system requires each state variable.

5.3. Flight Control

This section focuses on the low- and mid-level control
layers. The low-level layer is in charge of running the
attitude and thrust controllers, i.e. this layer comprises
the controllers in charge of keeping the desired roll (ϕd),
pitch (θd), yaw velocity (ψ̇d) and thrust (Td). They will
not be further discussed in this paper since they are typi-
cally provided by the manufacturer as part of the platform
firmware.

The mid-level control layer is in charge of tracking the
desired linear velocity commands ẋd, ẏd and żd by sup-
plying the suitable attitude and thrust commands to the
low-level controllers, according to the fact that, when a
multirotor is tilted, i.e. rotated around the X (roll com-
mand) and/or the Y (pitch command) axis, it suffers an
acceleration towards that specific direction. Motion along
the Z axis (changes in height) is controlled by means of
suitable thrust commands. In our framework, pitch, roll
and thrust commands are obtained through PID control,
i.e. the desired pitch command θd is obtained from the
error in the longitudinal velocity Eẋ as

θd(t) = K ẋ
p Eẋ(t)−K ẋ

d ẍ+K ẋ
i

∫ t

0

Eẋ(τ) dτ, (1)

where K ẋ
p , K ẋ

d and K ẋ
i are the constants for the propor-

tional, derivative and integral terms, and the derivative
term involves the linear acceleration ẍ estimated by the
IMU. Similar PIDs obtain the desired roll ϕd and thrust
T ∗
d from, respectively, the errors in the lateral and verti-

cal linear velocities. Furthermore, the desired thrust T ∗
d

is added to the thrust value necessary to compensate the
weight of the platform, i.e. the thrust for hovering Th, to
obtain the final desired thrust as Td(t) = Th + T ∗

d (t).
The suitable value for the hovering thrust depends not
only on the vehicle weight, but also on the air density,
which varies with the air temperature. Th is accordingly
auto-adjusted when a flight is started. After switching to
the flying stage, the MAV is checked to be high enough to
prevent perturbations due to the proximity of the ground.
Then, the vehicle is left to free hover and the mean of
the desired thrust is computed. During this process, the
height controller will try to contribute to the initial Th
the value required for hovering. After some seconds, Th is
overwritten limiting the update ∆Th to Th incr, to prevent
oscillations. The process is repeated until Th converges.

The mid-level control layer also comprises a height con-
troller, which is activated when the desired vertical ve-
locity żd is zero. When this command becomes null, the
platform height is saved as the desired height zd, and used
to compute the height error Ez. PID control is also used
for this task:

6

www.ros.org/reps/rep-0103.html
www.ros.org/reps/rep-0103.html


Table 1: MAV state. The first column indicates the modules or control systems which require each state variable: position (x, y, z), orientation
(ϕ, θ, ψ), linear velocities (ẋ, ẏ, ż), angular velocities (ϕ̇, θ̇, ψ̇), linear accelerations (ẍ, ÿ, z̈), and distances to obstacles below, in front and
at both sides of the platform (db, df , dl, dr).

x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇ ẍ ÿ z̈ db df dl dr

Attitude contr. × × × × × ×
Velocity contr. × × × × × ×
Height contr. × ×

MAV behaviours × × × ×
Image tagging × × × ×

ż∗d(t) = Kz
p Ez(t)−Kz

d ż +Kz
i

∫ t

0

Ez(τ) dτ. (2)

This time the derivative term makes use of the estimated
velocity in the vertical axis. Before being introduced in
the vertical speed controller, the output of this PID is
saturated by means of

żd(t) = max(−żdM
, min(żdM

, ż∗d(t))), (3)

where żdM
is the maximum vertical velocity allowed, to

limit the ascending/descending speed of the platform when
it is trying to keep a certain height, as well as to reduce the
effect produced by possible errors in the height estimation.

5.4. Behaviour-based Control

The high-level control layer executes the MAV be-
haviours module. Following the SA paradigm, this mod-
ule comprises a set of robotic behaviours which are in
charge of fulfilling the commanded task, indicated by the
user/surveyor via qualitative instructions, while perform-
ing self-preservation tasks such as obstacle detection and
collision avoidance. In other words, this module com-
bines the user desired speed with the available sensor data
through a reactive control strategy to provide the desired
velocity command (ẋd, ẏd, żd).

The robot behaviours are organized in a hybrid
competitive-cooperative framework. This framework
makes use of the following combination mechanisms:

• a competitive mechanism to allow a higher priority
behaviour to overwrite the output of a lower prior-
ity behaviour, which consists in using a suppression
mechanism taken from the subsumption architectural
model [2] (see Fig. 4 [left]);

• a cooperative mechanism to merge the output of sev-
eral behaviours with the same priority level, which is
performed through a motor schema [2], where all the
behaviours involved supply each a motion vector, so
that the final output is the weighted summation of all
motion vectors (see Fig. 4 [middle]); and

• a selective mechanism to choose between the ouptput
of two or more behaviours, i.e. a sort of multiplexer
(see Fig. 4 [right]).

Figure 4: Behaviour combination mechanisms: (left) competitive
mechanism using the subsumption architectural model for suppres-
sion, (middle) cooperative mechanism using motor schema for vector
summation, and (right) selective mechanism by signals multiplexing.

Figure 5 details our behaviour-based architecture, show-
ing how the different behaviours are organized and how
they contribute to the final speed command. The different
behaviours are grouped depending on its purpose, setting
up four general categories:

• Behaviours to accomplish the user intention. This
group comprises the attenuated go, the attenu-
ated inspect and the waiting for connectivity be-
haviours. The behaviour attenuated go propagates
the user desired speed vector command, attenuating
it towards zero in the presence of close obstacles. In
more detail, when the vehicle is moving towards an
obstacle, the speed is reduced in accordance to the
proximity to the obstacle. The speed is not attenu-
ated when the user command moves the MAV away
from the obstacle. By way of example, when the ve-
hicle moves along the longitudinal axis obeying a user
command ẋud, the output of the attenuated go be-
haviour ẋd ag is computed as

ẋd ag = min(ẋud, Kag ẋdM
·max(0, df − dm)), (4)

where Kag ∈ [0, 1] is the attenuation factor, ẋdM
is the

maximum speed allowed along the X axis, df is the
estimated distance to the nearest obstacle in front of
the MAV and dm is the minimum distance allowed to
any obstacle. Notice that Eq. 4 limits the final speed
command to the user desired speed, which in turn is
also limited through the user interface.

The attenuated inspect behaviour proceeds in the
same way, being only activated in the so-called in-
spection mode. While in this mode, the vehicle moves

7



Figure 5: MAV behaviours: (A) groups behaviours to accomplish the user intention, (B) groups behaviours that ensure the platform safety
within the environment, (C) groups behaviours that increase the autonomy level, and (D) groups behaviours oriented to check flight viability.

at a constant and reduced speed (if it is not hovering)
and user commands for longitudinal displacements or
turning around the vertical axis are ignored. Fur-
thermore, a PID controller, similar to that used for
height control, is activated to provide the suitable ve-
locity commands along the longitudinal axis (ẋd ai).
In this way, during an inspection, the platform keeps
at a constant distance and orientation with regard to
the front wall, what prevents changes in scale and
strange viewpoints. Moreover, since the lateral speed
is not locked, one can choose the most appropriate
for each occasion, e.g. low speed to avoid blurring
and at the same time ensure enough overlap between
consecutive images. This would not only provide the
surveyor with good quality images, but would also
permit stitching the collected images together and so
present him/her an image composite to make easier
the condition assessment (see, in this respect, [14]).

Finally, the waiting for connectivity behaviour sets
zero speed (i.e. hovering) when the connection with
the base station is lost. After some seconds, if the
connection is not restored, this behaviour is also in
charge of landing the platform.

• Behaviours to ensure the platform safety within
the environment. This category includes the pre-
vent collision behaviour, which generates a repulsive
vector to separate the platform from surrounding ob-
stacles, whose magnitude increases as a function of
proximity. By way of example, when an obstacle is
detected in front of the platform, at a distance lower
than the minimum allowed (dm), the prevent collision
behaviour gives rise to the following output

ẋd pc = −Kpc ẋdM
·max(0, dm − df ), (5)

where Kpc ∈ [0, 1] is the repulsion factor. The
joint actuation of this behaviour and the attenu-
ated go/inspect behaviours implements the collision
avoidance functionality on-board the platform.

A second behaviour called limit max height produces
an attraction vector towards the ground when the ve-
hicle is approaching its maximum flight height:

żd lmh = −Klmh żdM
·max(0, z − zM ), (6)

where Klmh ∈ [0, 1] is the attraction factor, and żdM

and zM are the maximum allowed values for the ver-
tical speed and height.

A last behaviour called ensure reference surface de-
tection generates suitable attraction vectors that keep
the platform close enough to at least one of the refer-
ence surfaces (the ground or the front wall), to ensure
proper state estimations when using the optical flow
sensors (see Section 6.1 for the details). Thus, if the
vehicle requires the ground to estimate its estate (i.e.
there is no wall in front of the MAV), an attraction
vector towards this surface is applied when the dis-
tance db exceeds a maximum value dbM :

żd ers = −Kers żdM
·max(0, db − dbM ), (7)

where Kers ∈ [0, 1] is the attraction factor. Similarly,
when the vehicle requires the front wall to estimate
its estate (i.e. the ground is not detected by the bot-
tom looking optical flow sensor), an attraction vector
towards the inspected wall is applied:

ẋd ers = Kers ẋdM
·max(0, df − dfM ), (8)

where dfM is the maximum distance allowed regarding
the inspected wall. Furthermore, in this situation,
the commands for turning around the vertical axis
are suppressed to keep detecting the wall in front of
the platform. It is ensured through a desired angular
velocity that cancels the user rotation command ψ̇ud:

ψ̇d ers = −ψ̇ud. (9)

• Behaviours to increase the autonomy level. This cat-
egory comprises the behaviours that provide higher
levels of autonomy to both simplify the vehicle opera-
tion and to introduce further assistance during inspec-
tions. The go ahead behaviour is in charge of keeping
the user speed command, i.e. the user does not need
to reiterate the command all the time, until some ob-
stacle is detected or a new desired speed is introduced
by the user. This behaviour is of special interest when
a large displacement has to be performed, for exam-
ple, to go to the next wall to be inspected. An anal-
ogous behaviour called inspect ahead is in use when

8



the platform is flying in inspection mode. This is use-
ful, for example, when surveying a large wall. Notice
that the output of the behaviours in this category can
be overwritten at any time by the behaviours in the
previous mentioned categories.

• Behaviours to check flight viability. This group does
not contribute to the speed command, but it is in
charge of ensuring that the flight can start or progress
at a certain moment in time. It comprises a single be-
haviour named low battery land, which makes the ve-
hicle descend and land when the battery is exhausted,
i.e. its voltage is below a minimum value vm.

To finish, it is worth noting that these behaviours have
all been designed specifically for visual inspection applica-
tions.

6. State Estimation

The estimation of the state of the platform results from
processing and combining the data provided by the dif-
ferent onboard sensors. Among the huge amount of tech-
niques available for data fusion —to name but a few [19]:
probabilistic methods (including the Kalman filter and its
variations, and Monte Carlo simulation-based techniques
such as the particle filter), methods based on eviden-
tial belief reasoning, fuzzy methods, possibilistic methods
and rough set-based methods—, our solution opts for the
widely used Kalman filters due to their computational sim-
plicity and satisfactory performance in this application.

The state estimation module has been designed as a
pipeline comprising several components which perform a
specific task each. These components can be added or re-
moved depending on the processes that need to be per-
formed to get an estimate for one or more state vari-
ables from the data provided by a specific sensor belong-
ing to the particular sensor suite employed on every occa-
sion. Actually, there is a pipeline for every sensor suite.
They will be described in the following sections, formalized
through the following types of components:

• Driver. It is used to communicate with a sensor device
and to introduce the raw data into the pipeline.

• Data filtering. It provides different kinds of filters to
block, restrict and/or smooth data. Some examples
are the mean filter, the median filter and different
versions of the Kalman filter.

• Data preparation. This component eliminates/com-
pensates undesired effects (such as biases or offsets)
from the measured data. For example, a data prepa-
ration component can be used to eliminate the gravity
acceleration from the linear acceleration measure cap-
tured with an IMU. Another component can be used
to compensate the tilt (roll and pitch) of the MAV in
order to obtain an accurate estimate of the distance to
the ground from a bottom-looking range sensor data.

• Data splitting. This component allows splitting the in-
formation included in a data structure, so that several
output structures are provided with a part of the in-
formation each. For example, a data splitting module
can be used to divide an image into two sub-images,
or to separate the different channels of a colour image.

• Data processing. This is the key component in charge
of processing data to obtain useful information for
the state estimation. This component can be used to
implement odometers, SLAM algorithms, etc.

• Data combination. It is used to merge data from two
or more inputs, usually fed by data processing com-
ponents, to obtain a state estimation. This can entail
some kind of process to select the suitable data among
the input elements, according to some conditions.

The different pipelines are detailed in the following.

6.1. Sensor Suite 1

The state estimation pipeline designed for the SS1 is
shown in Fig. 6. Seven driver components are used, one for
each sensor: the IMU, two optical flow sensors, one optical
range sensor, two US range sensors and one camera.

The driver component for the IMU is assumed to pro-
vide the orientation of the platform, the linear accelera-
tions and the angular velocities. All these values are usu-
ally filtered on-board the IMU device, so that further fil-
tering is not required. Nevertheless, the measured linear
accelerations are affected by the gravity acceleration. To
compensate this effect, a data preparation component is
used, taking into account the platform roll and pitch, to
compensate the corresponding value to each linear accel-
eration component.

Moreover, the linear acceleration measures are typically
affected by some static bias. This is compensated in the
same data preparation component, estimating a bias for
each axis as the mean value of the first N measures af-
ter platform switch-on, and subtracting them from the
gravity-compensated measures.

The drivers for the optical flow sensors provide both
the velocity regarding the reference surface (the ground
for the bottom-looking sensor and the front wall for the
forward-looking sensor) and the distance to that surface
(measured by means of the embedded US range sensor).
A data filtering component is used to filter out the peaks
(if any) in the measured distance, as well as to smooth the
velocities. Firstly, a so-called peak filter is used to detect
large changes in the measured distance. When this occurs,
the last distance used is employed until detecting the end
of the peak (i.e. the current distance becomes similar to
the last used). If the peak has not finished after some time,
it may indicate that this is due to a discontinuity in the
reference surface (indeed it was not a peak), and the new
measured distance is used. Notice that, while in normal
operation, this filter does not introduce any delay into the
distance measurement.

9



Figure 6: State estimation pipeline for the SS1. Sensor orientation: BL/bottom-looking, FL/forward-looking, LL/left-looking, RL/right-
looking.

Secondly, a Kalman Filter (KF) is used to smooth the
velocities estimated through optical flow measurement and
also to estimate the normal speed with regard to the ref-
erence surface. Notice that, in SS1, the bottom-looking
optical flow sensor provides the longitudinal and lateral
velocities (ẋ and ẏ), while the vertical velocity (ż) is esti-
mated from the measured distance by the KF. For the case
of the forward-looking optical flow sensor, it provides the
lateral and vertical velocities (ẏ and ż in the body fixed
coordinate frame), and the KF is used to estimate the lon-
gitudinal speed (ẋ). Due to the estimation of these state
variables via software, i.e. not through a direct sensing
device, the corresponding components in the pipeline can
also be considered as data processing, as shown in Fig. 6.

The optical range sensor is added to measure the dis-
tance to the floor with a detection range larger than the
one provided by the US sensor embedded in the opti-
cal flow device. The data supplied by the corresponding
driver is introduced in a third data filtering component.
This makes use of an averaging filter, to remove the high-
frequency noise, and a peak filter, as used for the dis-
tance provided by the optical flow sensors. The resulting
distance is introduced in a data preparation component
which compensates the MAV tilt, to obtain the distance
to the floor. This is then introduced in two data process-
ing components. On the one hand, the MAV height (z)
is estimated in a so-called height estimator. This com-
ponent keeps the values for the estimated heights of the
platform and the floor, both initialized to zero. When a
new distance measure db is received, this component com-
putes the difference ∆d regarding the previous distance
received. If this value is below a certain threshold, it is
considered a change in the flight height, and ∆d is added
to the estimated MAV height. If ∆d is above the thresh-
old, the distance change is considered to be probably due

to a discontinuity in the floor, and the ∆d is added to or
subtracted from the estimated floor height, while the MAV
height is preserved. Notice that both heights are always
referenced to the take-off surface.

On the other hand, the tilt-compensated distance is also
used to estimate the vertical speed ż. The corresponding
component computes the instantaneous velocity by means
of discrete differentiation. If the result is above a given
threshold, probably due to a discontinuity in the floor sur-
face or due to an error in the distance sensor, the velocity
measure is considered incorrect and it is set to zero. The
filtered velocity is finally introduced in a smoothing KF,
similarly to the velocities from the optical flow sensors.

The drivers for the side-looking US range sensors pro-
vide the distance to the obstacles situated to the left (dl)
and to the right (dr) of the platform. This values do not
require any filtering nor preparation.

Finally, the camera driver supplies colour images from
the environment situated in front of the MAV. These
images are introduced into a data processing component
which runs a SLAM algorithm. The output of this process
is the position and orientation of the platform regarding
the take-off location (see Section 7.2 for further details).

All the estimated state variables are introduced in a data
combination component, the state provider. This compo-
nent combines all the estimated state variables to build
up the MAV state. The values for x and y are taken from
the monocular SLAM algorithm and scaled using a λ fac-
tor since SS1 adopts a monocular approach. This factor is
computed dividing the estimated height z, which is taken
from the height estimator, by the scaled z provided by the
SLAM method. The orientation (ϕ, θ, ψ), angular veloc-
ities (ϕ̇, θ̇, ψ̇), linear accelerations (ẍ, ÿ, z̈), and the dis-
tances df , dl and dr, are taken from their unique providers,
as shown in Fig. 6. The distance db comes from the optical

10



Table 2: Selection of the source for the MAV velocities and
height state variables, when using the SS1. BL/FL refer to the
bottom/forward-looking optical flow sensors, OR refers to the opti-
cal range sensor, OK/NA means that the sensor data is available/not
available, ∗ indicates a derivation of a range measurement, val′ and
val′′ are positive values.

Mode
Sensor Sensor

availability selection
BL FL OR z ẋ ẏ ż

0 OK NA OK OR BL BL OR∗

1 OK OK OK OR BL BL FL

2 NA OK OK OR FL∗ FL FL

3 NA OK NA
∫
ż FL∗ FL FL

-1 NA NA OK OR 0 0 OR∗

-2 NA NA NA
∫
val′ 0 0 val′′

range sensor, while the one provided by the bottom look-
ing optical flow sensor is used to know whether this sensor
is detecting the reference surface, as explained below.

Finally, the linear velocities (ẋ, ẏ, ż) result from combin-
ing the estimates resulting from the bottom-looking and
forward-looking optical flow sensors, as well as by the op-
tical range sensor (just for ż). The most suitable source is
selected in every case depending on whether the reference
surfaces are detected or not. The rules for this selection
are detailed in Table 2.

Four different modes (modes 0 to 3) are defined de-
pending on whether the front wall and/or the ground can
be used as reference surface by the optical flow sensors
(i.e. whether they are closer than the maximum detec-
tion range of the embedded US range sensor). Follow-
ing these selection rules, the MAV velocities are prefer-
ably estimated based on optical flow measures, and only
when these are not available, the system makes use of the
values obtained differentiating distance measures. Notice
that the flight height is not limited as long as there is a
wall in front of the vehicle that can be used as reference
surface by the forward looking sensor (mode 3 is used in
that case). The detection of at least one reference surface
(i.e the front wall or the ground) is guaranteed thanks to
the ensure reference surface detection behaviour (see Sec-
tion 5.4). Nevertheless, in case this behaviour can not
manage to achieve its goal, two additional error modes are
defined. The first one (mode -1) is used when the optical
range sensor is able to detect the ground, so that this is
used to estimate both the height and the vertical velocity.
The second error mode (mode -2) is used when no sensor
can detect any reference surface. In that case, the height
value is increased using a predefined ramp, while the ver-
tical speed is set to a fixed positive value. This error mode
makes the platform descend in such an emergency situa-
tion (the PID controllers for height and vertical speed will
reduce the motor thrust trying to decrease the positive
ascending speed).

The selected linear velocities are finally filtered in a KF,
which is implemented in the same data combination com-
ponent (see Fig. 6). This is used to combine the estimated

linear velocities with the IMU linear accelerations.

6.2. Sensor Suite 2

Figure 7 shows the state estimation pipeline for the case
of SS2. The IMU and the optical range sensor are used to
estimate the same estate variables as for the SS1 pipeline,
so that the same components are used.

The laser scanner driver provides the distances to the
obstacles situated around the sensor. This array of dis-
tances, i.e. a laser scan, is introduced in a data filtering
component which applies two filters. On the one hand, a
filter is used to remove laser readings that are most likely
caused by the veiling effect, which is produced when the
edge of an object is being scanned. On the other hand,
we apply a range filter to remove all measurements which
are greater than an upper value or less than a lower value.
This filter allows removing, for example, all laser beams
which collide with some element of the MAV structure.

The filtered laser scan enters a data preparation compo-
nent which compensates the roll and pitch of the MAV, in
order to obtain an orthogonal projection of the laser scan.

A laser-based odometer is used next to estimate first the
2D motion of the platform and, ultimately, its 2D location.
This data processing component makes use of an Iterative
Closest Point (ICP) algorithm to estimate the 2D trans-
form T (comprising a translation and a rotation) necessary
to match the current laser scan with the previous laser scan
(or reference laser scan). In this algorithm, the rotation
in yaw (ψ) provided by the IMU is used as initial guess
for the transform. Furthermore, the reference laser scan
is kept during several executions, and it is just updated
when the platform performs a large displacement. This
reduces the drift in the estimated pose produced by the
noise in the scans, which can lead to non-zero transforms
even when there is no displacement.

The resulting 2D location (x, y) is not used as the po-
sition estimate due to the inherent bias in dead-reckoning
processes, but it is introduced in a 3-axis velocity esti-
mator together with the estimated distance to the ground
(db). This data processing component is analogous to the
vertical speed estimator used in in the SS1, but defined
for the three linear velocities. Like the one-dimensional
version, this component includes a first step to filter out
peaks in the computed speed, and a KF to smooth next
the resulting signal.

A data splitting component is used to split the orthog-
onal laser scan into three segments, where each part com-
prises the beams providing information of the obstacles
situated to respectively the left, in front and to the right
of the platform. Each segment enters next in a data pro-
cessing component which estimates the corresponding dis-
tances dl, df or dr as the minimum value among readings.

As in the pipeline designed for the SS1, the 2D posi-
tion of the platform (x, y) is estimated in a data process-
ing component which implements a SLAM process. This
makes use of the tilt-compensated laser scan and the posi-
tion estimated by the odometer to create a 2D map of the

11



Figure 7: State estimation pipeline for the SS2.

Table 3: Selection of the optical flow data when using the SS3.
BL/FL refers to the bottom/forward-looking optical flow sensor,
OK/NA means that the sensor data is available/not available, ∗ in-
dicates a derivation of a range measurement.

Mode
Sensor Sensor

availability selection
BL FL ẋ ẏ

0 OK NA BL BL

1 OK OK BL BL

2 NA OK FL∗ FL

-1 NA NA 0 0

environment and to compute the drift-free position of the
MAV. Further details are provided in Section 7.2.

Finally, a data combination component is used to collect
and supply all the estimated state variables. Unlike the
SS1, in this case, each state variable has a unique provider
so it is not required to perform any kind of source selec-
tion. The same KF used for the SS1 is of application here
to filter the linear velocities fused with the linear acceler-
ations.

6.3. Sensor Suite 3

The pipeline for the SS3 is detailed in Fig. 8. This looks
very similar to SS2, but including the information provided
by the two optical flow sensors. This entails the use of
the two drivers and the two corresponding data filtering
components already used in the pipeline for SS1. The
information provided by these two devices is merged into
an additional data combination component. Within this,
a selection of the suitable state variables describing the 2D
velocity (ẋ, ẏ) is performed following a subset of the rules
defined for the SS1. These rules are detailed in Table 3.

The estimated 2D velocity is introduced, together with
the estimated yaw, into the laser odometer. This is the
key component within this pipeline, since it fuses the es-
timates provided by the optical flow sensors and the laser
scanner. In this case, the odometer makes use of the es-
timated 2D linear velocities to get an initial estimate of
the displacement of the MAV. This translation, together
with the rotation indicated by the IMU, is used to initialize
the ICP algorithm. In this way, when the vehicle is flying
in a poorly structured environment (such as a corridor or
a single large wall without corners), where the ICP algo-
rithm fails, the displacement can be successfully estimated
thanks to the optical flow measurements. The rest of the
pipeline is configured in the same way as for the SS2.

7. Implementation

This section provides details regarding the implementa-
tion of the aerial inspection tool. Section 7.1 tackles the
physical realization of the aerial device, describing, by way
of illustration, three different realizations, and showing the
specific details for the integration of the different sensor
suites considered, which result in a different configuration
each. Section 7.2 provides details for the integration of
the software corresponding to all the control and estate
estimation systems/modules described previously.

7.1. Physical Realization of the Aerial Platform

For the physical implementation of the aerial device,
we have used three different commercial multirotors pro-
duced by Ascending Technologies 4 (AscTec): the Hum-
mingbird, the Firefly and the Pelican. These are electric-
powered MAVs that fulfil the requirements regarding the

4www.asctec.de/en/

12

www.asctec.de/en/


Figure 8: State estimation pipeline for the SS3.

vehicle configuration, capabilities (such as VTOL), size
and weight, and hence they are suitable for flying in con-
fined spaces or close to structures.

These platforms incorporate one IMU and two ARM7
processors. The primary ARM7, known as the Low-Level
Processor (LLP), is in charge of executing the low-level
control layer, comprising the attitude and thrust con-
trollers. The LLP is also in charge of providing the inertial
data from the IMU at 1 kHz. The secondary ARM7, the
High-Level Processor (HLP), is left free so that the user
can implement its own position/velocity controller. A se-
rial connection is available to communicate both micro-
controllers.

The Hummingbird is the smallest of the three platforms
(see Fig. 9 [A]). This quadcopter has been used as test
bench, so that all the algorithms to implement the differ-
ent systems/modules within the control architecture have
been firstly tested using this platform. Due to its lim-
ited payload (200 g), a laser scanner can not be carried by
the Hummingbird, so that this platform can only fit the
SS1. The optical flow sensors installed are the PX4Flow
device developed within the PX4 Autopilot project [16].
Two MaxBotix US range sensors HRLV-EZ4 US are used
estimate the distance to the obstacles situated to the left
and to the right of the platform. As optical range sensor,
we make use of an IR time-of-flight Teraranger One [28]
which can detect an obstacle situated up to 14 m. The
camera installed is a uEye UI-1221LE, while the on-board
computer installed to execute the high-level control is a
Commell LP-172 Pico-ITX board featuring an Intel Atom

2×1.86 GHz processor and 4 GB RAM. Due to the limited
computation resources of this board, the visual-SLAM al-
gorithm can not be executed on-board the Hummingbird.

The SS1 has been also installed on-board the Firefly
platform (see Fig. 9 [B]). This is a hexacopter with a higher
payload capacity (600 g) that has been used to carry a
more powerful on-board computer, which allows executing
the visual-SLAM algorithm. This is an AscTec Master-
mind board featuring an Intel Core 2 Duo SL9400 2×1.86
GHz processor and 4 GB RAM. Regarding the sensors,
the same devices installed on the Hummingbird have been
used for the Firefly. The optical range sensor has been
changed by the Lidar-Lite laser range finder that provides
range data up to 40 m. Additionally, this platform has
been equipped with a GoPro Hero 4 camera to take first-
person videos during the inspection mission.

Finally, the Pelican platform (see Fig. 9 [C]) is used to
implement both the SS2 and the SS3. The larger pay-
load capabilities of the Pelican (650 g) together with its
layered structure, allows fitting the vehicle with a laser
scanner and a powerful on-board computer. Regarding
the laser scanner, a Hokuyo UST 20LX has been installed.
This is a lightweight device (only 130 g) that can detect
obstacles situated up to 20 m. The optical range sensor
used is the Lidar-Lite also installed on-board the Firefly
platform. Regarding the on-board computer, it is an Intel
NUC board featuring an Intel Core i5-4250-U 2×1.3 GHz
processor and 8 GB RAM. The vision system installed on-
board the Pelican includes a PointGrey Chameleon3 USB
3.0 device and a GoPro Hero 4. Furthermore, this plat-

13



A B C

A B C

Figure 9: (Top) The aerial platforms as delivered by the manufacturer: (A) Hummingbird, (B) Firefly, and (C) Pelican. (Bottom) the
platforms equipped with the sensor suites, on-board computers and cameras.

form has been fitted with a high power LED to illuminate
the inspected surface in dark environments. To implement
the SS3, two PX4Flow sensors are added to the previous
configuration. Figure 9 [C] shows the Pelican platform
fitted with the SS2.

Regarding the base station, we have used a generic lap-
top featuring an Intel Core 2 Duo T6670 2×2.20 GHz
processor and 4 GB of RAM. A joystick or gamepad is
connected to this laptop to allow the user/surveyor to in-
troduce the commands. The base station communicates
with the on-board computers installed on the three MAVs
via a WiFi connection. To this end, the involved machines
can use both the 2.4 GHz and the 5 GHz bands.

7.2. Software Organization

To implement the inspection tool, we have developed
software to be executed on the three different processing
units/boards available in the robots: the secondary ARM7
processor (HLP, according to the manufacturer nomencla-
ture), the on-board computer and the base station. The
software for the HLP includes the implementation of the
flying state machine, described in Section 5.1, and the mid-
level control layer, comprising the height and velocity con-
trollers. The HLP processor has been also programmed
to execute the bias/gravity compensator component, in-
cluded in the state estimation pipeline, to prepare the data
supplied by the IMU (see Section 6.1 for details).

Both the on-board computer and the base station run
Linux Ubuntu. The software developed for these machines
has been programmed using the Robot Operating System
(ROS) 5 [27]. Each component in the state estimation
pipeline has been programmed as a ROS node (exclud-
ing the bias/gravity compensator). All these nodes, which

5www.ros.org

are executed on the on-board computer, have been im-
plemented following the specifications stated in Section 6.
The laser odometer is an adaptation of [9].

Regarding the SLAM algorithms, we have integrated
two existing solutions. On the one hand, the monocular
version of the visual SLAM algorithm ORB-SLAM [22]
has been integrated in the state estimation pipeline exe-
cuted on-board the AscTec Firefly platform. On the other
hand, the laser-based SLAM algorithm GMapping [15] has
been integrated as part of the pipelines designed for the
SS2 and the SS3, both using the laser scanner and exe-
cuted on-board the AscTec Pelican.

The MAV behaviours module has been developed as an-
other ROS node which comprises several functions to im-
plement the different robot behaviours described in Sec-
tion 5.4. This node receives the user commands and the
state of the platform, and provides the final commands to
be sent to the mid-level control layer, executed on the HLP.
These commands are sent to an additional node which im-
plements an interface between the HLP processor and the
ROS software. In more detail, this node sends, through
the serial communication with the HLP, the velocity, take-
off and landing commands, while provides the other ROS
nodes with the IMU data and information about the plat-
form status: the flight stage, the linear acceleration biases,
and the battery voltage.

A camera module has been implemented to manage the
camera during an inspection. This consists in a ROS node
which communicates with the camera driver. This module
allows taking a single picture on demand, as well as tak-
ing a sequence of images at a specified frame rate. When
taking a single image, this is sent to the base station for
its visualization. Image sequences are stored on-board the
MAV to reduce network traffic. The images in these se-
quences are tagged with the vehicle position, and represent
the output of the inspection performed using the robot.

Table 4 shows measures for the CPU load and the mem-

14

www.ros.org


Table 4: CPU load and memory usage for the different process-
ing boards. Metrics for the on-board computer provided exclud-
ing/including the execution of the corresponding SLAM method.

HLP
On-board computer

Humm. Firefly Pelican

CPU load 62% 33%/– 7%/65% 6%/12%

Memory – 15%/– 15%/66% 27%/40%

ory usage, regarding the different processing boards/units
installed on-board the MAVs. These measures are given
both excluding and including the execution of the corre-
sponding SLAM algorithm, which is the costliest process.
As can be observed, when the SLAM algorithm is not con-
sidered, the SS2 pipeline executed on the Pelican platform
requires more memory than the SS1, executed on the other
platforms. This is due to the the different filtering and pre-
processing stages required to prepare the data provided by
the laser scanner. Nevertheless, when the SLAM methods
are executed, the vision-based solutions included in the
SS1 requires more memory to store all the data structures
that this algorithm handles. The percentages provided in
this table are illustrative, since the memory consumption
will vary depending on the size of the map and the config-
uration of the algorithm parameters.

The base station (BS) essentially executes two function-
alities: the management and sampling of the input device
(e.g. joystick or gamepad), and the Graphical User In-
terface (GUI). Regarding the former, the BS provides the
user commands to the different modules running on the
aerial platform: (1) the user desired velocities along the
three axes, and the rotational velocity around the verti-
cal axis, are fed into to the MAV behaviours module, (2)
the take-off/land commands are forwarded to the HLP in-
terface node, (3) the enable/disable inspection mode com-
mand is delivered to the MAV behaviours module, (4) the
command to keep the current speed (i.e. to activate the
go/inspect ahead behaviour) is supplied to the MAV be-
havious module, and (5) the command to take a picture
or to start/stop a sequence is issued to the camera module.

Regarding the GUI, following the SA paradigm, qualita-
tive explanations are provided to indicate what is happen-
ing during the course of a mission. For example, the GUI
indicates “going forward” when the go ahead behaviour is
enabled, or “low battery landing” when the corresponding
behaviour is activated. The GUI is also used to provide
instructive feedback including the distances to the obsta-
cles situated around the platform, the flight height and
the estimated velocities. When using the optical flow sen-
sors (pipelines for SS1 and SS3), the GUI also indicates
the mode used to combine the information provided by
the two optical flow sensors (see Tables 2 and 3). Finally,
the user interface is also used to show the images captured
with the on-board camera when these are requested by the
user. Different visualization tools included in ROS, such
as rqt image view or rqt plot, become useful at this time.

8. Platform Capabilities Assessment

This section reports on the experimental assessment of
the capabilities of the aerial robotic tool. Since different
configurations using different sensor suites have been de-
veloped, this section firstly checks the flying capabilities
of the different setups. In this regard, Section 8.1 presents
several experiments performed to evaluate the state esti-
mation and control performance in hovering and displace-
ment manoeuvres. Secondly, Section 8.2 reports on the
performance of the different robot behaviours, showing
how each one contributes to the control and/or safety of
the platform. During the experiments, a motion capture
system has been used to obtain the position, orientation
and velocity of the platform. They all have been consid-
ered as the ground truth (GT) in all experiments.

8.1. Hovering and Displacement Capabilities

A first kind of experiments, assesses the hovering ca-
pability of the platform. This manoeuvre becomes a key
component within the SA approach, as this is the reac-
tion of the aerial platform while flying and waiting for
new commands. In this regard, Fig. 10 shows some results
obtained when using the SS1 fitted on-board the AscTec
Firefly. This figure plots the histograms of the speed values
during a 1-minute hovering manoeuvre, performed in each
of the four estate estimation modes (see Table 2). Indeed,
each plot compares the histogram of the speeds measured
using the motion capture system (using a continuous line)
with the values estimated using the optical flow sensors
(using dashed lines). To facilitate the comparison, the his-
tograms have been generated using the same quantization
bins, and they are provided as a probability. As can be ob-
served, all the histograms are approximately zero-centered,
what indicates that the platform performs a suitable hover-
ing using the different state estimation modes. These his-
tograms also illustrate the quality of the on-board velocity
estimations. Figure 11 shows the 3D position of the plat-
form provided by the motion capture system during the
four hovering flights. Notice that the deviations respect to
the first position which can be observed are normal since
we do not apply position control but velocity control. In
these plots (and in the remaining plots showing the path
followed by the MAV) the initial and final points are in-
dicated with respect to the origin of the global reference
frame, which coincides with the take-off point.

The hovering manoeuvre has been repeated using the
laser scanner based system (i.e. the SS2) on-board the
AscTec Pelican platform. The results are provided in
Fig. 12. As already happened with the other platforms,
the histograms resulting from the measured velocities are
approximately zero-centered, and the displacement of the
platform is pretty reduced.

In a second kind of experiments, the behaviour of the
aerial devices has been evaluated while the user issues dis-
placement commands. To be precise, in this case, the

15



Mode 0 Mode 1

Mode 2 Mode 3

Figure 10: Normalized histograms of estimated speeds for 1-minute
hovering flights performed using the SS1 and the different state es-
timation modes. Continuous lines are used for the data provided
by the motion capture system (ground truth), while dashed lines
are used for the values estimated by the aerial device. Experiments
performed using the AscTec Firefly.

user/pilot is consigned to try to perform a square-like tra-
jectory. We have proceeded in the same way as for the
hovering experiments, so that four flights have been per-
formed to evaluate the SS1 performance, using a different
state estimation mode in each flight. For the first flight,
the state estimation mode 0 has been used, so that the
bottom-looking sensor has been utilized to estimate all the
MAV velocities regarding the ground. The square-like tra-
jectory has thus been performed in the XY plane. The rest
of the flights, using the state estimation modes 1, 2 and 3,
have been performed in front of a vertical wall, since this
is required for the speed estimation. In these flights, the
square has been performed in the Y Z plane, i.e. parallel to
the wall. Figure 13 [left] shows the trajectories performed
by the MAV as indicated by the motion tracking system.
As can be observed, the user/pilot can easily perform the
square-like trajectory parallel to the reference frame. Re-
member that the system lacks a position control loop, so
that the human is in charge of positioning the MAV.

These experiments also allow checking the vehicle re-
action to the user commands. By way of example,
Fig. 13 [right] shows the user commands sent to perform
the square-like trajectory (blue), together with the esti-
mated velocities (red), in the case of using the state esti-
mation mode 2. Remember that this mode is used when
the platform is flying close to the wall under inspection but
far from the ground, so that this is probably the most used
mode during a vessel inspection campaign. Similar results
have been obtained for the rest of the estimation modes,
and can be found in [8]. Notice that, during these exper-
iments, the vehicle has been operated far from obstacles,
so that there are not attenuations nor repulsions, and the
speed command provided by the MAV behaviours module

Mode 0 Mode 1

Mode 2 Mode 3

Figure 11: Plots of the position of the MAV indicated by the motion
tracking system during 1-minute hovering flights performed using
the SS1 and the different state estimation modes. Experiments per-
formed using the AscTec Firefly. The green dot indicates the initial
point, while the red dot indicates the final point.

coincides with the user desired speed. As can be observed
in the plots, the estimated speeds follow the user desired
speed, what indicates a successful operation of the velocity
controllers. The plots also allow validating the suitability
of the velocity estimation procedure, since the estimated
velocities are compared with the velocities provided by the
motion tracking system (green).

A similar experiment has been performed using the plat-
form equipped with the SS2. In this case, the trajectory
followed by the vehicle consists in two consecutive squares
performed at different heights. The plots corresponding to
this experiment are provided in Fig. 14.

A specific experiment has been carried out to assess the
performance of the SS3 state estimation. This consists in
flying the AscTec Pelican platform forwards parallel to a
wall situated at its left. The vehicle has been displaced
around 4 meters, and then it has been moved backwards
approximately to the initial location. During this flight, all
the data provided by the sensors comprising the SS3 have
been saved. Then, several executions using the different
state estimation pipelines have been carried out. Firstly,
the SS1 and SS2 pipelines have been used to estimate the
vehicle speed. Figure 15 [left] provides the results obtained
in pink and black respectively. As can be observed, these
approximately follow the ground truth value provided by
the motion tracking system, indicated in green.

Then, the SS2 pipeline has been used once again, now
limiting the laser scanner maximum range to 1 m (the
sensor can detect obstacles at 20 m) in order to restrict

16



Figure 12: Results for a hovering flight using the SS2 on board the
AscTec Pelican: (left) normalized histograms of estimated speeds
(continuous lines are used for the data provided by the motion cap-
ture system, while dashed lines are used for the values estimated by
the aerial device), (right) position of the platform (the green and red
dots indicate the initial and final points respectively).

the readings to the left wall, when estimating the vehicle
velocities. In other words, the rest of the walls and struc-
tures in the laboratory are ignored by the aerial device.
Under these conditions, the SS2, which relies solely on the
laser scanner to estimate its longitudinal velocity, is not
able to provide a correct speed estimation, as shown in
Fig. 15 [left] in red. A last execution for the same sensor
data has been performed using the SS3 pipeline. As can be
observed in blue, the speed estimated by the laser odome-
ter, when the optical flow data is used as initial guess,
successfully approximates the ground truth speed.

Figure 15 [right] provides an additional analysis of the
results obtained with this experiment. In this figure, the
estimated speeds have been integrated to obtain an esti-
mate of the vehicle position along the X axis. As can be
observed, when the laser scanner range is limited, the ve-
hicle position indicated by the SS3 (blue) approximately
matches the position indicated by the motion tracking sys-
tem (green), while the displacement indicated by the SS2
(red) is clearly underestimated, as was expected.

8.2. Robot Behaviour Evaluation

Once we have assessed the flight capabilities of the
MAVs equipped with the different sensor suites, we pro-
ceed to evaluate the performance of the robot behaviours.
In the following, several experimental results are reported
in this regard, where each behaviour is evaluated using
only one of the MAVs (and a specific sensor suite). Sim-
ilar results have nevertheless been observed for the other
platforms. To prevent extending unnecessarily this pa-
per, only results for the most important behaviours are
reported here, while experiments showing the performance
of the complete set of behaviours can be found in [8].

In a first experiment, we check how the platform be-
haves in a situation of imminent collision. To do that,
we move the Firefly platform equipped with the SS1 to-
wards a wall. The plot for this experiment can be found in
Fig. 16. The right plot shows how the longitudinal speed
command provided by the MAV behaviours module (ẋd)

coincides with a user command (ẋud) of around 0.4 m/s
until the wall in front of the vehicle becomes closer than
1.5 m (instant A), moment at which the user-desired veloc-
ity is attenuated by the attenuated go behaviour making
the speed command decrease in accordance to the close-
ness to the wall. When the wall becomes closer than 1 m
(instant B), which is the minimum distance allowed (dm),
the user-desired speed is completely cancelled by the pre-
vent collision behaviour, and the platform stops. Notice
that the user desired speed is around 0.4 m/s until instant
C. The left plot provides the vehicle trajectory and the
wall position, as captured by the motion tracking system.
The actuation of the attenuated go behaviour is indicated
in a different colour (pink).

A second experiment, reported in Fig. 17 [right], checks
the performance of the go ahead behaviour. In this exper-
iment, we have used the Pelican platform fitted with the
SS2. At the beginning, the user indicates a longitudinal
desired speed of 0.4 m/s and then activates the go ahead
behaviour (instant A). At this moment, in accordance to
the behaviour definition, the speed command produced by
the MAV behaviours module (ẋd) keeps at 0.4 m/s al-
though the user-desired speed (ẋud) returns to zero. This
value is kept until the wall in front of the vehicle becomes
closer than dm (instant B), which is set to 1.2 m for this
experiment. Then, the prevent collision behaviour cancels
the go ahead command and stops the platform. This be-
haviour is also in charge of producing the negative speed
command that separates the platform from the wall until
it is again at the safe distance (instant C). Figure 17 [left]
shows the vehicle trajectory, indicating in pink when the
go ahead behaviour is active.

Figure 18 [A] describes a sixth experiment in which the
performance of the ensure reference surface detection be-
haviour is assessed. This behaviour is only used with the
SS1, so this experiment has been performed on the Firefly
platform. The experiment starts with the platform flying
at a certain distance from the front wall, so that the vehicle
only makes use of the ground-looking optical flow sensor
to estimate its velocity (state estimation mode 0). Within
this mode, the vehicle is allowed to ascend (action a1) un-
til the maximum distance to the ground, i.e. the reference
surface, is attained (the maximum distance dbM was set
to 1.5 m for this experiment). The next ascending order
(action a2) is ignored. Next, the vehicle moves towards
the front wall (action a3) until the vehicle is close enough
so as to also use this wall to estimate its state (state esti-
mation mode 1). Once the vehicle is close to the wall, it
moves upwards (action a4) until the ground becomes too
far for the ground-looking optical flow sensor (2 m for this
experiment) and the front wall becomes the only reference
surface (state estimation mode 2). Subsequently, the user
tries to turn the vehicle to the right (action a5) but this
action is ignored to ensure a proper reference surface de-
tection. Figure 18 [B] shows the trajectory followed by the
MAV, indicating the estimation mode used. Figures 18 [C-
E] plot sensor data for the full operation, and for, respec-

17



Mode 0 Mode 1

Mode 2 Mode 3

Figure 13: (Left) Plots of the trajectory of the MAV indicated by the motion tracking system during square-like flights performed using the
SS1 and the different state estimation modes. Experiments performed using the AscTec Firefly. The green dot indicates the initial point,
while the red dot indicates the final point. (Right) Plots of the speed of the aerial device while receiving commands to perform a square-like
trajectory using the estimation mode 2.

tively, the longitudinal, vertical and angular speeds. The
distance to the front wall and the vehicle height are shown
to make evident the corresponding motion.

9. Experimental Results from Inspection Missions

This section reports on the performance of the platform
while surveying a surface. For a start, we evaluated its
behaviour under laboratory conditions using the motion
tracking system. In this regard, Figure 19 shows the re-
sults corresponding to a flight performed using the Pelican
platform fitted with the SS2 while sweeping a 2.5×4 m can-
vas printed to simulate the metallic plates of a vessel wall.
The operation starts when the user/surveyor makes the
platform approach the canvas. At more or less 1 m dis-
tance, the inspection mode is activated, and, hence, longi-
tudinal motion as well as rotations in yaw are not allowed
to ensure better image capture conditions. The opera-
tor next orders lateral and vertical motion commands to
sweep the surface, while records an image sequence at 10
Hz. Figure 19 [A] shows the vehicle trajectory, indicating
when the inspection mode is active. Figures 19 [B-C] illus-
trate the full operation for the longitudinal [B], lateral [C]
and vertical [D] motions. These velocities are shown at the
bottom of the plots, while distances to, respectively, the
front wall/left wall/ground are shown at the top, to make
evident the corresponding motion. Notice that, when the
inspection mode is enabled (between instants A and B) the
longitudinal user-desired speed is ignored, and a PID con-
troller is in charge of keeping the distance to the inspected
wall, while the user only has the option of selecting hover-
ing or motion in the vertical or lateral direction, but the
speed command is set to ±0.2 m/s. The plots also show

repulsive speed commands produced when the platform is
below 1 m regarding the front or left wall (see instants C,
D and E). Additional successful results for this kind of ex-
periments, related with image tagging with the platform
pose during inspection missions, can also be found in [8].

The usability and good performance of the platform un-
der field conditions were next evaluated in a series of trials
performed on board a Handymax bulk carrier with dead-
weight tonnage above 45000 tons, and whose size was 190
m (length)×32 m (breadth)×16.5 m (height). A picture
of this particular vessel can not be included for confiden-
tiality reasons. Instead, Fig. 20 provides a general view
and the plans corresponding to a vessel with the same
characteristics. During the test campaign, the MAV was
operated in three different compartments: the cargo hold
#4 (see Fig. 21 [A]), the water ballast topside tank #3
(see Fig. 21 [B]) and the forepeak tank (see Fig. 21 [C]).

The operating conditions in each compartment were
very different. On the one hand, the cargo hold was a
very large compartment where the light could be relatively
adjusted, since the hatch could be opened and closed. On
the other hand, the forepeak and topside ballast tanks were
narrow and dark spaces accessible through a manhole-sized
entry point, so that the onboard LED had to be used to
allow for a proper visual inspection.

The MAV used during the field trials was also the Pel-
ican platform equipped with the SS2. This sensor suite,
based on the use of a laser scanner, is suitable for flying in
dark spaces (e.g. inside a ballast tank) where the optical
flow sensors, employed in the SS1, can not operate. Fur-
thermore, this vehicle is equipped with a high power LED
to illuminate the inspected surface if necessary.

All the experiments were performed following the same

18



A B C

D
E

F

Figure 14: Results obtained with the AscTec Pelican fitted with the SS2 commanded to perform a double-square trajectory: (A) plot of the
trajectory indicated by the motion tracking system (the green and red dots indicate the initial and final points), (B-C) 2D projections of the
trajectory, (D-F) reactions of the MAV to the velocity commands in the tree axes.

Figure 15: Results for a flight parallel to a wall using the SS3: (left) estimated speeds, (right) positions estimated via speed integration. The
results are compared with the ground truth and the values obtained using the SS1 and SS2. Experiment performed limiting the laser scanner
range to 1 m to force the situation inside the laboratory.

procedure: (1) the vehicle is situated in a flat and obstacle-
free area for the take-off, (2) the user sends the take-off
command using a gamepad/joystick and the vehicle starts
the flight, (3) the user approximates the platform to the
area where the inspection has to take place, while the con-
trol architecture based on SA takes care of the platform
preservation, (4) the user can optionally enable the inspec-
tion mode to make the vehicle move smoothly and keep at
a constant distance to the inspected surface, (5) a sequence
of pictures can be started when desired, (6) the user can
command the platform along the lateral and vertical axes
(also longitudinally if the inspection mode is not enabled)
to perform the inspection, (7) the sequence of pictures can
be stopped when desired, (8) the inspection mode is dis-
abled (in case it was enabled), (9) the user commands the
platform to an obstacle-free area for landing, and (10) the
user issues the command for landing.

Figure 21 [A] shows some pictures taken during testing

at the cargo hold. In a first session, flights took place in
front of the aft bulkhead, frames #75-78, while in a second
session, testing focused on the cargo web frames, starboard
side, frames #78-90.

By way of illustration, Fig. 24 shows the paths esti-
mated for two of these flights. In the two cases, paths
were successfully estimated by means of the GMapping
SLAM method, which makes use of the data provided by
the laser scanner. Figure 25 shows a longer flight in front
of a large wall, in which the robot flew from left to right
and then back. On this occasion, the SLAM module got
confused just before coming back, and, because of this, the
path does not ends where it started. This error is probably
due to the long distance to all the corners and lack of dis-
tinguishable structural elements inside the cargo hold. To
show the actual path followed by the MAV, Fig. 25 [C-D]
shows the first part of the flight, while Fig. 25 [E-F] shows
the second part. Notice that this error in the position esti-

19



Figure 16: Performance of the attenuated go and the prevent collision behaviours: (left) vehicle trajectory and wall position indicated by the
motion capture system, (right) the user-desired speed is obeyed (→A), it is attenuated (A→B) and cancelled to prevent an imminent collision
(B→C) until the user-desired speed does become zero (C→). All units are in SI (m or m/s accordingly).

Figure 17: Performance of the go ahead and the prevent collision behaviours: (left) vehicle trajectory and wall position indicated by the
motion capture system, (right) the user-desired speed is sustained while the wall is at enough distance (A→B), it is cancelled and even forced
to be negative to prevent an imminent collision (B→C) until the platform is again at the safe distance (C→). All units are in SI (m or m/s
accordingly).

mation does not compromise the platform nor the mission,
since the control actions take place over the speed. Some
of the images captured by the on-board camera during this
flight can be found in Fig. 22 [A].

Figure 21 [B] shows some pictures of the experiments
performed at the topside tank, which took place in front
of frames #111-131. Unlike the cargo hold, this compart-
ment is a confined space where the self-preservation ca-
pability, included in the SA framework, becomes critical.
These tests also allowed us to check the capability of the
platform to take pictures under low-light (hatchway open)
and under completely dark (hatchway closed) conditions.

By way of illustration, Fig. 26 shows the paths estimated
for two of the flights performed in the topside tank. In the
first case, the vehicle was flying with some light available
from the hatch. In the latter case, the hatch was closed,
and hence the area was completely dark. In both cases,
the SLAM method provided a successful position estima-
tion. Some of the images captured by the on-board camera
during this last flight can be found in Fig. 22 [B]. As can
be observed, these are adequately illuminated thanks to
the use of the high power LED installed in the MAV.

Finally, Fig. 21 [C] shows some pictures of the experi-
ments performed at the forepeak tank. Testing took place
among frames #215-225 in the upper stringer. All the
experiments in this compartment were performed in com-
plete darkness.

By way of illustration, Fig. 27 shows the paths esti-
mated for two of the flights performed in the topside tank,
while Fig. 22 [C] provides some of the images captured
during the latter flight using the on-board camera. As
happened in the topside tank, the self-preservation capa-
bility of the platform ensured an effective and safe opera-
tion, while the laser-based SLAM process supplied correct
position estimations thanks to the well-structured environ-
ment. The pictures provided by the camera module were
also good, thanks to the illumination available from the
on-board LED.

The images taken during the inspection campaign were
later analysed to detect the defective areas using the
saliency-based defect detection method described in [6].
Examples of detection outputs can be found in Fig. 23.
As can be observed, the detection method can successfully
detect the corroded areas in the different vessel compart-
ments, without any problem due to the illumination con-
ditions or the motion of the platform.

10. Conclusions

A reconfigurable framework to turn a MAV into a useful
tool for vessel visual inspection has been presented. This
framework has been designed following the SA paradigm
in order to obtain a robotic device that can be operated as

20



A

B

D

C

E

Figure 18: Illustration of the performance of the ensure reference surface detection behaviour: (A) experiment performed, (B) trajectory
followed by the MAV indicating the estimation mode used, (C-E) longitudinal, vertical and angular commands/displacements (see text for
the explanation). All units are in SI (m, m/s or rad/s accordingly).

a flying camera that takes care of all safety-related issues
while the surveyor concentrates on the inspection task.

The system architecture has been devised to be reconfig-
urable in the sense that it can incorporate different sensor
suites depending on the platform payload capabilities and
the operational/environmental conditions. In this regard,
three alternative sensor suites have been proposed and de-
tailed, including the software components necessary for
their implementation and integration.

An extensive experimental evaluation has been per-
formed to validate the capabilities and usability of different
platform configurations, including tests performed under
laboratory conditions and a real inspection campaign car-
ried out on board a bulk carrier. The results obtained con-
firm that the system requirements have been successfully
fulfilled. In particular, the images taken using the aerial
robotic tool operating under the inspection mode present
good quality so that they can be used for either a posterior
inspection of defects by a human surveyor or to feed a de-
fect detection algorithm to autonomously identify/locate
the defective areas.

Regarding the system requirements, the platform fulfils
them all, as discussed next:

1. The vehicle allows a close-up view of the inspected
surface. It is based on a multirotor UAV with there-
fore capabilities for hovering and VTOL, and it is
equipped with a still camera and, optionally, with an
additional video camera. The camera module allows
the user/pilot to take pictures and image sequences on
demand. Furthermore, the inspection mode facilitates

the capture of good-quality pictures since it keeps con-
stant the distance between the vehicle and the in-
spected wall, while prevents fast movements which
may cause blurring.

2. The vehicle obeys the user/surveyor commands. As
part of the SA framework, the user/pilot can pro-
vide displacement commands by means of a joy-
stick/gamepad. These commands are received by the
control architecture which tries to accomplish them
as much as possible.

3. The vehicle allows reaching the highest structures of
the vessel hull. The sensors comprising the different
sensor suites provide measurements with regard to the
surfaces/structures situated below, in front of and at
both sides of the robotic platform. Therefore, when
flying far from the floor, the vehicle state can be esti-
mated as far as it is operated relatively close to other
surfaces, what is also a requirement for a proper visual
inspection.

4. Due to its size and weight, the vehicle can be oper-
ated inside rather narrow spaces, task which is further
simplified thanks to the assistance of the control soft-
ware as it can prevent any collision with the vessel
structures (this is more extensively discussed below).

5. The vehicle can be operated in dark areas, where day-
light can not penetrate. When using the SS2, the
state estimation is based on measurements provided
by a laser scanner, which does not require illumina-
tion to operate. Furthermore, successful pictures can
be taken thanks to the use of a high-power LED avail-

21



A B

C D

Figure 19: Performance of the robotic platform during an inspection task using the inspection mode: (A) walls and vehicle trajectory, indicating
when the inspection mode is active, (B-D) longitudinal, lateral and vertical commands/displacements (see text for the explanation). All units
are in SI (m or m/s accordingly).

Figure 20: Handymax bulk carrier similar to the vessel visited dur-
ing the field tests. Diagram by Rémi Kaupp taken from Wikipedia
(https://en.wikipedia.org/wiki/Bulk_carrier).

able at the platform.

6. The vehicle prevents collisions with any surrounding
obstacle. As part of the SA paradigm, the behaviour-

based control architecture is in charge of preventing
collisions with the vessel structures or other obsta-
cles, so that the vehicle can not collide even when the
user/pilot provides commands to do so.

7. The robotic platform can be operated by a non-expert
user, who maybe has never used a similar device. This
is also thanks to the SA paradigm, which implements
the concepts instructive feedback, qualitative instruc-
tions and qualitative explanations, among others.

8. The vehicle implements some autonomous behaviours
to alleviate the inspection task to the user/surveyor.
The go-ahead behaviour keeps the user speed com-
mand until some obstacle is detected in the proxim-
ity of the vehicle, or until the user provides a new
speed command. This is of particular interest when
a large displacement has to be performed such as,
for example, when the vehicle has to be commanded
to the other end of a big cargo hold where the next
inspection is going to be performed. Similarly, the
inspection-ahead behaviour allows keeping the user
speed command while a large wall is being inspected
using the inspection mode.

In comparison with the MAV resulting from the MI-
NOAS project, the new approach allows introducing the
human surveyor into the position control loop, what in-
creases the platform usability and makes the vessel inspec-
tion more effective. At the same time, since its control
architecture does not rely on precise position estimations
(which may be difficult to obtain in certain scenarios in-

22

https://en.wikipedia.org/wiki/Bulk_carrier


A A

B B

C C

Figure 21: Some pictures to illustrate testing on board the bulk
carrier: [A] cargo hold, [B] topside tank and [C] forepeak tank.

side real vessels), the new platform is more reliable and
robust.

Despite a number of enhancements have been introduced
in the aerial platform, there is still room for improvement
and hence a number of additional tasks have been planned
to be addressed in the near future. On the one hand, we
are intent on implementing extra behaviours that try to
ensure that the platform can estimate its motion as ro-
bustly as possible, e.g. when using the SS2, the laser-
based odometer and the posterior SLAM step should have
the possibility to collect enough information from the sur-
rounding environment so as to produce accurate motion
estimations under as many and varied circumstances as
possible. On the other hand, we are intent on developing
and integrating other behaviours that fit the MAV with
further autonomous capabilities, to make it an even more
effective and robust tool during inspections.

Acknowledgements

This work is partially supported by FEDER funding,
by the European Social Fund through Ph.D. scholar-
ship FPI10-43175042V (Conselleria d’Educació, Cultura
i Universitats, Govern de les Illes Balears), by project
nr.AAEE50/2015 (Direcció General d’Innovació i Recerca,
Govern de les Illes Balears), by FP7 project INCASS (GA
605200) and by H2020 project ROBINS (GA 779776).

A A

B B

C C

Figure 22: On-board camera images while flying in [A] the cargo
hold, [B] the topside tank and [C] the forepeak tank.

References

[1] Akinfiev, T. S., Armada, M. A., Fernandez, R., 2008. Nonde-
structive Testing of the State of a Ship’s Hull with an Under-
water Robot. Russian Journal of Nondestructive Testing 44 (9),
626–633.

[2] Arkin, R. C., 1998. Behavior-based Robotics. MIT Press.
[3] Bibuli, M., Bruzzone, G., Bruzzone, G., Caccia, M., Giacopelli,

M., Petitti, A., Spirandelli, E., 2012. MARC: Magnetic Au-
tonomous Robotic Crawler Development and Exploitation in
the MINOAS Project. In: International Conference on Com-
puter Applications and Information Technology in the Maritime
Industries. pp. 62–75.

[4] Bonnin-Pascual, F., Garcia-Fidalgo, E., Ortiz, A., 2012. Semi-
autonomous Visual Inspection of Vessels Assisted by an Un-
manned Micro Aerial Vehicle. In: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. pp. 3955–3961.

[5] Bonnin-Pascual, F., Ortiz, A., 2016. A Flying Tool for Sensing
Vessel Structure Defects using Image Contrast-based Saliency.
IEEE Sensors Journal 16 (15), 6114–6121.

[6] Bonnin-Pascual, F., Ortiz, A., 2018. A Novel Approach for De-
fect Detection on Vessel Structures using Saliency-related Fea-
tures. Ocean Engineering 149, 397–408.

[7] Bonnin-Pascual, F., Ortiz, A., Garcia-Fidalgo, E., Company,
J. P., 2015. A Micro-Aerial Platform for Vessel Visual Inspection
based on Supervised Autonomy. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 46–52.

[8] Bonnin-Pascual, F., Ortiz, A., Garcia-Fidalgo, E., Company-
Corcoles, J. P., 2018. Turning a MAV into an Effective Tool for
Vessel Inspection through a Reconfigurable Framework. Tech.
Rep. A-01-2018, Department of Mathematics and Computer
Science, University of the Balearic Islands.
URL http://xiscobonnin.github.io/trA118.pdf

[9] Censi, A., 2008. An ICP Variant using a Point-to-Line Metric.
In: IEEE International Conference on Robotics and Automa-
tion.

23

http://xiscobonnin.github.io/trA118.pdf


A A

B B

C C

Figure 23: (Left) Images taken by the aerial inspection tool inside
the vessel compartments: (A) cargo hold, (B) topside tank, and (C)
forepeak tank. (Right) Defect maps resulting from the saliency-based
defect detection algorithm described in [6].

[10] Cheng, G., Zelinsky, A., 2001. Supervised Autonomy: A Frame-
work for Human-Robot Systems Development. Autonomous
Robots 10, 251–266.

[11] Eich, M., Bonnin-Pascual, F., Garcia-Fidalgo, E., Ortiz, A.,
Bruzzone, G., Koveos, Y., Kirchner, F., 2014. A Robot Appli-
cation to Marine Vessel Inspection. Journal of Field Robotics
31 (2), 319–341.

[12] Ferreira, C. Z., Conte, G. Y. C., Avila, J. P. J., Pereira, R. C.,
Ribeiro, T. M. C., 2013. Underwater Robotic Vehicle for Ship
Hull Inspection: Control System Architecture. In: International
Congress of Mechanical Engineering.

[13] Fondahl, K., Eich, M., Wollenberg, J., Kirchner, F., 2012. A
Magnetic Climbing Robot for Marine Inspection Services. In:
International Conference on Computer Applications and Infor-
mation Technology in the Maritime Industries. pp. 92–102.

[14] Garcia-Fidalgo, E., Ortiz, A., Bonnin-Pascual, F., Company,
J. P., 2016. Fast Image Mosaicing using Incremental Bags of
Binary Words. In: IEEE International Conference on Robotics
and Automation.

[15] Grisetti, G., Stachniss, C., Burgard, W., 2007. Improved Tech-
niques for Grid Mapping with Rao-Blackwellized Particle Fil-
ters. IEEE Transactions on Robotics 23, 34–46.

[16] Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M., 2013. An
Open Source and Open Hardware Embedded Metric Optical
Flow CMOS Camera for Indoor and Outdoor Applications. In:
IEEE International Conference on Robotics and Automation.
pp. 1736–1741.

[17] Huerzeler, C., Caprari, G., Zwicker, E., Marconi, L., 2012. Ap-
plying Aerial Robotics for Inspections of Power and Petrochem-
ical Facilities. In: International Conference on Applied Robotics
for the Power Industry. pp. 167–172.

[18] Ishizu, K., Sakagami, N., Ishimaru, K., Shibata, M., Onishi,
H., Murakami, S., Kawamura, S., 2012. Ship Hull Inspection
using A Small Underwater Robot With A Mechanical Contact
Mechanism. In: IEEE/MTS OCEANS Conference. pp. 1–6.

[19] Khaleghi, B., Khamis, A., Karray, F. O., Razavi, S. N., 2013.
Multisensor Data Fusion: A Review of the State-of-the-Art.
Information Fusion 14, 28–44.

[20] Menendez, E., Victores, J. G., Montero, R., Mart́ınez, S., Bala-
guer, C., 2018. Tunnel Structural Inspection and Assessment us-
ing an Autonomous Robotic System. Automation in Construc-
tion 87, 117–126.

[21] Morgenthal, G., Hallermann, N., 2014. Quality Assessment of
Unmanned Aerial Vehicle (UAV) Based Visual Inspection of
Structures. Advances in Structural Engineering 17 (3), 289–302.

[22] Mur-Artal, R., Montiel, J. M. M., Tardós, J. D., 2015. ORB-
SLAM: A Versatile and Accurate Monocular SLAM System.
IEEE Transactions on Robotics 31 (5), 1147–1163.

[23] Narewski, M., 2009. Hismar - Underwater Hull Inspection and
Cleaning System As a Tool for Ship Propulsion System Perfor-
mance Increase. Journal of Polish CIMAC 4 (2), 227–234.

[24] Newsome, S. M., Rodocker, J., 2009. Effective Technology for
Underwater Hull and Infrastructure Inspection. In: IEEE/MTS
OCEANS Conference. pp. 1–6.

[25] Ortiz, A., Bonnin-Pascual, F., Garcia-Fidalgo, E., Company-
Corcoles, J. P., 2016. Vision-Based Corrosion Detection Assisted
by a Micro-Aerial Vehicle in a Vessel Inspection Application.
Sensors 16 (paper nr. 2118).

[26] Ozog, P., Carlevaris-Bianco, N., Kim, A., Eustice, R. M., 2016.
Long-term Mapping Techniques for Ship Hull Inspection and
Surveillance using an Autonomous Underwater Vehicle. Journal
of Field Robotics 33 (3), 265–289.

[27] Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., Ng, A. Y., 2009. ROS: an Open-Source
Robot Operating System. In: ICRA Workshop on Open Source
Software.

[28] Ruffo, M., Castro, M. D., Molinari, L., Losito, R., Masi, A.,
Kovermann, J., Rodrigues, L., 2014. New Infrared Time-of-
flight Measurement Sensor for Robotic Platforms. In: IMEKO
TC4 Int. Symposium and Int. Workshop on ADC Modelling and
Testing. pp. 13–18.

[29] Sa, I., Hrabar, S., Corke, P., 2015. Inspection of Pole-Like Struc-
tures using a Visual-Inertial Aided VTOL Platform with Shared
Autonomy. Sensors 15 (9), 22003–22048.

[30] Tâche, F., Pomerleau, F., Fischer, W., Caprari, G., Mondada,
F., Moser, R., Siegwart, R., 2010. MagneBike: Compact Mag-
netic Wheeled Robot for Power Plant Inspection. In: Interna-
tional Conference on Applied Robotics for the Power Industry.

24



A B

A B

Figure 24: Estimated paths followed by the aerial robot during two flights in the cargo hold: (A) 3D plot of the trajectories, (B) 2D projection
of the trajectories. The green and red dots indicate the initial and final points respectively.

A C
E

B D F

Figure 25: Erroneous estimation of the aerial robot path during a flight in the cargo hold: (A-B) 3D plot and 2D projection of the complete
trajectory, (C-D) 3D plot and 2D projection of the first part of the flight, (E-F) 3D plot and 2D projection of the second part of the flight.
The green and red dots indicate the initial and final points respectively.

25



A B

A
B

Figure 26: Estimated paths followed by the aerial robot during two flights in the topside tank: (A) 3D plot of the trajectories, (B) 2D
projection of the trajectories. The green and red dots indicate the initial and final points respectively.

A B

A
B

Figure 27: Estimated paths followed by the aerial robot during two flights in the forepeak tank: (A) 3D plot of the trajectories, (B) 2D
projection of the trajectories. The green and red dots indicate the initial and final points respectively.

26


	Introduction
	System Requirements
	System Overview
	Sensor Suite
	Control Architecture
	Flight Stages
	Platform State
	Flight Control
	Behaviour-based Control

	State Estimation
	Sensor Suite 1
	Sensor Suite 2
	Sensor Suite 3

	Implementation
	Physical Realization of the Aerial Platform
	Software Organization

	Platform Capabilities Assessment
	Hovering and Displacement Capabilities
	Robot Behaviour Evaluation

	Experimental Results from Inspection Missions
	Conclusions

