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Abstract

Seagoing vessels have to undergo regular visual inspections in order to de-

tect defects such as cracks and corrosion before they result into catastrophic

consequences. These inspections are currently performed manually by ship

surveyors at a great cost, so that any level of assistance during the inspec-

tion process by means of e.g. a fleet of robots capable of defect detection

would significatively decrease the inspection cost. In this paper, we describe

a novel framework for visually detecting the aforementioned defects. This

framework is generic and flexible in the sense that it can be easily config-

ured to compute the features that perform better for the inspection at hand.

Making use of this framework and inspired by the idea of conspicuity, this

work considers contrast and symmetry as features for detecting defects and

shows their usefulness for the case of vessels. Three different combination op-

erators are additionally tested in order to merge the information provided by

these features and improve the detection performance. Experimental results

for different configurations of the detection framework show better classifi-
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cation rates than state of the art methods and prove its usability for images

collected by a micro-aerial robotic platform intended for visual inspection.

Keywords:

Defect detection, Vessel inspection, Corrosion, Cracks, Saliency,

Micro-Aerial Vehicle

1. Introduction1

Vessels are nowadays one of the most cost effective ways to transport2

goods around the world. Despite the efforts to avoid maritime accidents3

and wreckages, these still occur, and, from time to time, have catastrophic4

consequences in environmental, human and/or economic terms. Structural5

failures are the main cause of these accidents and, as such, Classification So-6

cieties impose extensive inspection schemes in order to ensure the structural7

integrity of vessels.8

An important part of the vessel maintenance has to do with the visual9

inspection of the internal and external parts of the vessel hull. They can be10

affected by different kinds of defects typical of steel surfaces and structures,11

such as cracks and corrosion. These defects are indicators of the state of the12

metallic surface and, as such, an early detection prevents the structure from13

buckling and/or fracturing.14

To carry out this task, the vessel has to be emptied and situated in a15

dockyard where scaffoldings are installed to allow the human inspectors to16

access the highest parts of the vessel structure (higher than 30 m in some17

cases). Taking into account the huge dimensions of some vessels, this process18

can mean the visual assessment of more than 600,000 m2 of steel. Besides,19
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the surveys are on many occasions performed in hazardous environments for20

which the access is usually difficult and the operational conditions turn out21

to be sometimes extreme for human operation. Moreover, total expenses22

involved by the infrastructure needed for close-up inspection of the hull can23

reach up to one million dollars for certain sorts of vessels (e.g. Ultra Large24

Crude Carriers). Therefore, it is clear that any level of automation of the25

inspection process that can lead to a reduction of the inspection time, a26

reduction of the financial costs, and/or an increase in the safety of the oper-27

ation, is fully justified.28

The EU-funded projects MINOAS (finished in 2012) and INCASS have29

among their goals the development of robotic platforms to automate as much30

as possible vessels’ inspection processes (Eich et al., 2014). One of these31

robots is a micro-aerial vehicle fitted with cameras, which is in charge of32

collecting images that can provide the surveyor with a global overview of the33

different surfaces and structures of the vessel (Bonnin-Pascual et al., 2015).34

These images are intended to be processed afterwards to autonomously detect35

the defective areas.36

Previous approaches on vision-based defect detection can be roughly clas-37

sified into two big categories. On the one hand, there are lots of contributions38

on industrial inspection and quality control; that is to say, algorithms that39

are in charge of checking whether the products that result from an industrial40

manufacturing process are in good condition. These methods assume a more41

or less confined environment where the product to be inspected is always42

situated in a similar position, while lighting conditions are controlled as well.43

Most of these techniques are collected in Chin and Harlow (1982); Newman44
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(1995); Malamas et al. (2003); Xie (2008).45

On the other hand, several other contributions focus on visual inspection46

techniques to ensure the integrity of elements or structures that have been47

subjected to some kind of effort or stress. These methods are typically in-48

cluded in periodical surveys to assess the need of maintenance operations. In49

this group, which include vessel hull inspection, we can find algorithms for50

crack detection on concrete surfaces (Yamaguchi and Hashimoto, 2010), de-51

fect detection on bridge structures (Jahanshahi et al., 2009), aircraft surface52

inspection (Siegel and Gunatilake, 1998; Mumtaz et al., 2010), etc.53

The majority of the algorithms from both categories have been devised54

for the detection of a specific defect on a particular material or surface, while55

much less methods deal with unspecified defects on general surfaces. The56

short distance from which the images must be captured is another point in57

common among the majority of the algorithms. Furthermore, to provide58

good results, most of them require from a learning and/or parameter-tuning59

stages.60

Special mention is made here to recent solutions based on Convolutional61

Neural Networks (CNNs), adopting latest deep learning training approaches.62

These techniques are widely used nowadays is many computer vision appli-63

cations due to its high capacity of learning and their good performance in64

non-easy classification problems. By way of example, Oullette et al. (2004)65

and Zhang et al. (2016) describe methods based on CNNs for the detection of66

cracks, while the approach presented by Petricca et al. (2016) focuses on the67

detection of corrosion. As mentioned before, these machine learning tech-68

niques require from a previous training stage, which, in this case, involves a69
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very large dataset.70

Regarding defect detection over vessel structures, just a few contribu-71

tions can be found. For example, Ozog and Eustice (2015) present a method72

to identify structural anomalies over visual reconstructions of underwater73

ship hulls. Restricting to those contributions which just use visual sensors,74

Bonnin-Pascual (2010) and Bonnin-Pascual and Ortiz (2014b) present de-75

tectors of cracks and corrosion for vessel structures. These algorithms do76

not need close-up images of the inspected surfaces to provide good results77

but their drawback is again that they require a previous training stage (e.g.78

to learn which is the color that corrosion usually presents) or tuning their79

working parameters (e.g. to know how thin and elongated must be a dark80

collection of pixels to be considered a crack), whose value is typically related81

with the distance from which the images have been collected.82

To the best of our knowledge, only one method has been published for83

generic defect detection in vessel structure images (Bonnin-Pascual and Or-84

tiz, 2014a). This approach makes use of a Bayesian framework to compute85

the probability of every pixel to correspond to some kind of defective sit-86

uation. This probability is based on the information learned in a previous87

training stage.88

This paper presents a novel approach for automatic detection of defects89

in images taken from the vessel structures. Unlike previous works, the pre-90

sented approach does not require from tuning a large set of parameters nor91

performing a previous training stage. A framework is proposed as a generic92

classifier that can be configured to make use of different features, poten-93

tially leading to different defect detectors each. Furthermore, the framework94
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foresees the combination of the respective feature responses in order to en-95

hance the overall output quality. The conspicuousness of defects in general,96

together with the kind of defects that can be expected in metallic surfaces97

(i.e. cracks and corrosion) and the image capture conditions, have guided98

the feature selection process.99

The rest of the paper is organized as follows: Section 2 describes the100

generic flexible defect detection framework; Section 3 explains how this frame-101

work particularizes for defect detection in vessel structures, considering con-102

trast (3.1), symmetry (3.2) and three alternative combinations among them103

(3.3); Section 4 discusses on the results of some experiments; and Section 5104

concludes the paper.105

2. A Flexible Framework for Defect Detection106

The importance of feature selection during the design of any classifier is107

discussed in Theodoridis and Koutroumbas (2006). In particular, the follow-108

ing questions must be answered: (1) which features are the best for a suitable109

classification, (2) how many features are necessary, and (3) how should these110

be combined to implement the best classifier.111

Taking that into account, we oriented the design of our defect detector112

towards a flexible framework which allows an easy integration of different113

features and their combinations. To attain this level of flexibility, we consid-114

ered that the framework must cover the following aspects: (1) it should allow115

computing one or more features that are potentially useful to discriminate116

between defective and non-defective situations; (2) final features response117

should not depend on scale; (3) one or more combination operators should118

6



be available to merge the information provided by the computed features119

and try to find the combination (if any) that improves the classification per-120

formance; and (4), related to the previous point, one o more normalization121

operators should be available to adapt the different features responses to a122

certain range, in order to ensure a proper combination.123

This generic framework has been organized as a modular pipeline which124

involves different stages that can be configured (or even removed) depend-125

ing on our needs, so that different configurations result into different defect126

detectors (see Fig. 1). Within the framework, each feature is computed as a127

different thread, while the final detection output results from the combination128

of the information supplied by all of them.129

In more detail, the framework consists of the following stages:130

• Pre-feature computation. The first stage prepares the input image to131

provide the information necessary to compute all features. From an132

input color image one can obtain, for example, the gray-scale (or inten-133

sity) image, the red channel image, the saturation image (from HSV134

color space), etc. Each one of these images is called a pre-feature map.135

• Scale-space generation. This stage scales the pre-feature maps using a136

range of scale factors to obtain a collection of multiple-scale represen-137

tations, also known as pyramids. The computation of each pyramid138

level can include filtering the input map using a specific kind of filter.139

One can compute, for example, a Gaussian pyramid which progressively140

low-pass filters and sub-samples the pre-feature map, an oriented Gabor141

pyramid for a preferred orientation θ, a simple sub-sampling pyramid142

computed without any filtering, etc.143
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• Feature computation. This is the core stage within the pipeline. Each144

instance of this stage is in charge of computing the value for a given145

feature for all the pixels of the input image. Since this can be fed with146

one or more multi-scale pyramids, a feature can be computed combining147

the information provided at different scales. Every output of this stage148

is called a feature map.149

• Normalization. This step normalizes the different feature maps to the150

same range of values to enable their combination.151

• Combination. This is the last stage of the pipeline. It is in charge of152

combining the normalized feature maps in order to obtain a single map,153

which is called the defect map. The mean and the median operators154

are some examples of simple combination operators. Unary operators155

such as unary minus or thresholding can also be considered.156

As indicated in Fig. 1, the generic framework allows computing more com-157

plex features by means of concatenating multiple instances of normalization158

and combination stages.159

The output of the framework is the defect map, which consists in a single-160

channel map where defective areas are supposed to be labelled with higher161

values.162

3. Detecting Defects on Vessel Structures163

Vessel structures consist of large surfaces that usually present a regular164

texture. When these surfaces are inspected from a certain distance, a defect165

appears as a discontinuity that alters the regularity of the texture. Based166
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on that, texture-related features seem to be a good option to differentiate167

between defective and non-defective areas.168

Furthermore, defects can also be considered as rare phenomena that may169

appear on such regular surfaces. Since they are rare, defects potentially170

attract the visual attention of the surveyor during a visual inspection process.171

Following these ideas, we propose to use texture-based features typically used172

in cognitive models to predict human eye fixations.173

Among them, we focus on those which can be evaluated through a saliency174

map. A saliency map consists in a topographic map that represents the175

conspicuousness of the different areas of the input image (Koch and Ullman,176

1985). This is typically shown as a gray-scale image where locations with177

higher conspicuity values are closer to white and less salient areas are closer178

to black. Notice that this representation fits with our definition of defect179

map.180

Taking all these considerations into account, contrast and symmetry have181

been selected as the features for detecting defects on vessel structures. The182

following sections detail further about the motivations that led us to consider183

these features as well as describe how the defect detector makes use of them.184

3.1. The Contrast-based Defect Detector185

As indicated in Borji and Itti (2013), three features have been tradition-186

ally used in computational models of attention: intensity, color and orien-187

tation. The sudden variation of some of these features, computed as a lo-188

cal contrast, increases the conspicuousness of the area producing bottom-up189

guidance (Wolfe, 2007).190

The information resulting from the variation of these three features is191
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typically combined into a single contrast-based saliency map. See for example192

Avraham and Lindenbaum (2010); Borji et al. (2011); Li et al. (2010); Zhang193

et al. (2015).194

We propose to use this local contrast (combining intensity, color and195

orientation) in a first attempt to locate coating breakdown/corrosion and196

cracks on vessel structures.197

The generic framework described in section 2 is of application now to198

design the contrast-based defect detector. The model presented in Itti et al.199

(1998) has been used as source of inspiration to design the different stages of200

the pipeline. The previous work described for the first time a contrast-based201

model for saliency and has also inspired later authors (Borji and Itti, 2013).202

Figure 3 details the contrast-based defect detector. As for its imple-203

mentation, each one of the stages of the generic pipeline (Fig. 1) has been204

particularized as follows:205

• Pre-feature computation. Five pre-feature maps are computed from the206

red (r), green (g) and blue (b) channels of the input image:207

I =
r + g + b

3
, (1)

208

R = r − g + b

2
, (2)

209

G = g − r + b

2
, (3)

210

B = b− r − g
2

, (4)
211

Y =
r + g

2
− |r − g|

2
− b, (5)
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where I is the intensity map, R is the red channel map, G is the green212

channel map, B is the blue channel map and Y is the yellow channel213

map. During the computation of these maps, negative values (if any)214

are set to zero.215

• Scale-space generation. Nine pyramids are computed from the pre-216

feature maps. On the one hand, five Gaussian pyramids Î, R̂, Ĝ, B̂ and217

Ŷ are computed by progressively low-pass filtering and sub-sampling218

the pre-feature maps (I, R, G, B and Y ). On the other hand, four Ga-219

bor pyramids Ô0, Ô45, Ô90 and Ô135 are computed filtering the images220

of the intensity pyramid Î with oriented Gabor filters with orientations221

θ ∈ {0◦, 45◦, 90◦, 135◦}. All pyramids comprise seven scales, ranging222

from 1:1 (scale one) to 1:64 (scale seven).223

• Feature computation. Three threads are executed in parallel to build224

three feature maps, respectively corresponding to the contrast level in225

intensity (I ), color (C ) and orientation (O). This computation is per-226

formed as indicated in Itti et al. (1998). A first step computes center-227

surround differences between fine and coarse scales from the pyramids;228

that is, it computes the difference between each pixel of a fine (or cen-229

ter) scale c and its corresponding pixel in a coarse (or surrounding)230

scale s. Accordingly, preliminary maps I(c, s), RG(c, s), BY(c, s) and231

O(c, s, θ) are created as follows:232

I(c, s) = |I(c)	 I(s)|, (6)
233

RG(c, s) = |R(c)−G(c))	 (G(s)−R(s))|, (7)
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234

BY(c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))|, (8)
235

O(c, s, θ) = |O(c, θ)	O(s, θ)|, (9)

where |x| refers to the absolute value of x, 	 is the across-scale sub-236

traction operator (see Fig. 2), I(c, s) accounts for the intensity con-237

trast, RG(c, s) accounts for red/green contrast, BY(c, s) accounts for238

blue/yellow contrast and O(c, s, θ) accounts for the orientation contrast239

for a given orientation θ. In our implementation, the scales are defined240

as c ∈ {1, 2, 3} and s = c+ δ, with δ ∈ {3, 4}.241

In a second step, the intermediate maps are combined into the following242

three feature maps by means of the across-scale addition operator ⊕243

(see Fig. 2 for details):244

I =
3⊕
c=1

c+4⊕
s=c+3

N(I(c, s)), (10)

C =
3⊕
c=1

c+4⊕
s=c+3

(N(RG(c, s)) +N(BY(c, s))) , (11)

O =
∑

θ∈{0◦,45◦,90◦,135◦}

N

(
3⊕
c=1

c+4⊕
s=c+3

N(O(c, s, θ))

)
, (12)

where N(.) is a normalization operator devised to promote high and245

isolated peaks. It adjusts the map to a fixed range [0..M] and multiplies246

it by (M −m)2, being m the average of all local maxima that do not247

coincide with the global maximum.248
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By way of illustration, a diagram showing the entire feature computa-249

tion for map I can be found in Fig. 2.250

• Normalization. The normalization operator N(.) is used now to pro-251

mote the highest and isolated peaks in the three feature maps, obtaining252

I for intensity, C for color and O for orientation.253

• Combination. The final defect map is computed using a linear combi-254

nation:255

Dcon =
I + C + O

3
, (13)

so that any salient point in any of the feature maps appears in the final256

defect map.257

3.2. The Symmetry-based Defect Detector258

A saliency model based on the Gestalt principle of symmetry was pre-259

sented in Kootstra et al. (2008). In their paper, they discuss local symmetry260

as a measure of saliency and investigate its role in visual attention. To261

this end, they use three different symmetry operators (isotropic, radial and262

color symmetry operators) and compare them with human eye tracking data.263

Their results suggested that symmetry was a salient structural feature for264

humans, as well as the suitability of their method for predicting human eye265

fixations in complex photographic images, where symmetry is not so evident.266

Furthermore, the authors use the saliency model by Itti et al. as a ref-267

erence for comparison. Their results show that, on many occasions, their268

symmetry operators outperformed the contrast-saliency model.269
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These are the reasons why, in this work, we decided to incorporate symme-270

try as a second feature for defect detection. Figure 4 shows our implemen-271

tation of the symmetry-based defect detector using the generic framework272

(Fig. 1), where each stage is particularized as follows:273

• Pre-feature computation. It computes one intensity map as indicated274

in Eq. 1.275

• Scale-space generation. This stage computes a simple sub-sampling276

pyramid with five scales, ranging from 1:1 (scale one) to 1:16 (scale277

five).278

• Feature computation. The symmetry map is calculated for each level279

l of the pyramid, using the isotropic operator. We have chosen this280

operator because it is easier to compute and no significant improvement281

was observed when using the radial or color symmetry operators for282

predicting human eye fixations (Kootstra and Schomaker, 2009).283

To obtain the final defect map based on symmetry, the five responses284

M(l) (one per pyramid level) are normalized using the normalization285

operator N(.) and finally added together across-scale into an scale 1:1286

map:287

Dsym =
5⊕
l=1

N(M(l)). (14)

Normalization and combination stages are not employed for this case since288

symmetry is the only feature used.289
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3.3. Combination of Contrast and Symmetry290

In order to deeper explore the possibilities of the selected features, the291

generic framework has been configured to combine the information that they292

convey in the following way:293

• Pre-feature computation. Five pre-feature maps are computed as de-294

scribed for the contrast-based method.295

• Scale-space generation. It generates ten pyramids, nine used for con-296

trast plus one used for symmetry, as detailed in, respectively, sections297

3.1 and 3.2.298

• Feature computation. It consists of four threads, one for each channel of299

contrast (intensity, color and orientation) plus one for symmetry. They300

proceed as indicated in previous sections.301

• Normalization. The normalization operator N(.) of section 3.1 is used302

in this stage to promote the areas from the feature maps that have been303

indicated as potentially defective by any of the features. Therefore,304

Dcon is obtained as the normalized version of the defect map based on305

contrast and Dsym is the analogue for the case of symmetry.306

• Combination. We initially propose two operators. The first one con-307

sists in a linear combination of the contrast and symmetry-based defect308

maps:309

DOR =
Dcon + Dsym

2
. (15)

This combination allows any defective point in any of the maps to be310

promoted so that it stands out in the final defective map. From now on,311
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it will be referred to as the OR combination, since this operator labels312

as defective those areas that result defective in the contrast-based map313

‘or’ in the symmetry-based map.314

The second combination operator that we propose merges the contrast315

and symmetry-based defect maps so that defective regions in the re-316

sulting map are required to be simultaneously indicated as potentially317

defective in both maps:318

DAND = Dcon ×Dsym, (16)

implementing, in a certain sense, the AND operator, i.e. this operator319

only labels as defective those areas that are indicated in the contrast320

‘and’ in the symmetry-based maps.321

In addition to these combinations, a third version has been considered322

which intends to explore the contribution provided by the different323

contrast channels, i.e., intensity, color and orientation. The four feature324

maps (including the symmetry map) are fused using a modified version325

of the OR combination:326

DORA =
I + C + O + Dsym

4
, (17)

which will be referred to as the ORA (Or-Alternative) combination,327

i.e. this operator labels as defective those areas that result defective328

in the intensity-contrast map ‘or’ in the color-contrast map ‘or’ in the329

orientation-contrast map ‘or’ in the symmetry map.330

Figure 5 shows the set up of the normalization and combination stages331

for the three detectors which combine contrast and symmetry information.332
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4. Assessment of the Defect Detector333

In this study, we have used a dataset comprising 73 images of vessel334

structures including defective areas (cracks, coating breakdown and different335

kinds of corrosion). The images have been collected at different distances336

and under different lighting conditions. This dataset also includes the ground337

truth consisting in binary images where defects are labelled in white (see Fig.338

7:B), and it is available online (http://dmi.uib.es/~xbonnin/resources).339

In this section, we report on the results of a number of experiments ori-340

ented to determine the performance of the different defect detectors described341

in the previous sections. In a first kind of experiment, we have assessed how342

suitable are contrast and symmetry to differentiate between defective and343

non-defective areas. To this end, the probability distribution of these two344

features has been computed for the two classes, defective and non-defective345

area. To estimate these PDFs, we have applied the Parzen windows method346

(Theodoridis and Koutroumbas, 2006) to the histograms corresponding to347

the combinations contrast/defect, symmetry/defect, contrast/non-defect and348

symmetry/non-defect. The resulting PDFs are shown in Fig. 6. We can state349

the following looking at those PDFs:350

• non-defective pixels present low values of contrast and symmetry (below351

10 for contrast and around 15 for symmetry), what confirms that non-352

defective areas present an uniform-intensity texture;353

• defective pixels tend to present higher values of both features (around354

25), so that these features seem to be useful to differentiate between355

defective and non-defective areas;356
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• contrast peaks are farther from one another than symmetry peaks,357

what could indicate that contrast is more discriminative than symmetry358

when describing the defective areas that appear in our dataset.359

In a second kind of experiment, we evaluated the performance of the360

proposed defect detectors. Figure 7 presents some examples of defect maps361

provided for the different cases, namely, the contrast-based detector, the362

symmetry-based detector and the three detectors which combine these two363

features using, respectively, the OR, AND and ORA combination operators.364

At first sight, it can be observed that all the defect detectors tend to label365

as whitish the areas that are indicated as defective in the ground truth image.366

This suggests that the different detectors can attain good classification rates.367

In order to perform a quantitative evaluation, the True Positive Rate368

(TPR), also known as recall, and the False Positive Rate (FPR), also known369

as fall-out, have been computed for the five defect detectors. To this end,370

the defect maps were thresholded for different values of a threshold τ to371

obtain the corresponding ROC curves, which are presented in Fig. 8 [left].372

Furthermore, the values for the Area Under the Curve (AUC) (Fawcett, 2006)373

have been calculated for all the ROC curves, obtaining the values also shown374

in Fig. 8 [left].375

Comparing the different ROC curves and AUC values, some interesting376

results can be stated: (1) the five defect detectors present good performances377

during the classification task, with ROC curves relatively close to the (0,1)378

corner (corresponding to the perfect classifier), and AUC values above 0.8;379

(2) contrast performs better than symmetry for the dataset employed in this380

study, what suggests that contrast provides more information to discriminate381
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between defective and non-defective areas in vessel structures; (3) the three382

detectors which combine both contrast and symmetry information lead to383

slightly better results than the version based only on contrast (i.e. symmetry384

provides complementary information), being the ORA combination the one385

which yields the highest AUC value.386

Similarly, Precision-Recall (PR) curves are reported for the five defect387

detectors. The precision indicates the proportion of positively classified sam-388

ples (i.e. pixels classified as defective) which are actually positive. Informally389

speaking, a high precision value means a low number of false positives, while390

a high recall (TPR) value means a low number of false negatives. The PR391

curves, which are provided in Fig. 8 [right], show that the combined detectors392

attain higher precision values than the single-feature detectors.393

In a third kind of experiment, the performances of the defect detectors394

presented in this paper have been compared with the one attained by some395

state of the art defect detectors. Each comparative assessment is performed396

using ROC/PR curves, which are provided in separate plots to simplify their397

interpretation. In a first experiment, we have compared with the WCCD398

algorithm (Bonnin-Pascual, 2010). This algorithm was devised for corro-399

sion detection in images taken from vessel structures. It consists in a cas-400

cade classifier that combines texture (described as the energy of a gray-level401

co-ocurrence matrix downsampled to 32×32 intensity levels) and colour in-402

formation, and which has proved to outperform other more complex weak-403

classifier combinations, such as the ABCD algorithm (Bonnin-Pascual and404

Ortiz, 2014b), which combines Laws’ texture energy filters within an Ad-405

aBoost framework. Notice that both WCCD and ABCD follow a supervised406
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classification scheme, so that they require from a previous training stage.407

The WCCD algoritm has been slightly modified with regard to Bonnin-408

Pascual (2010) to compute the energy for all the pixels of the image instead409

of computing it only at the patch level (the same energy value was originally410

used for all pixels of the 15 × 15 pixels patches), in order to obtain finer411

classification results.412

To perform the assessment, the original dataset was reduced to the set of413

images containing corrosion. The resultant dataset, comprising 49 images,414

was evaluated using the five defect detectors, as well as for the WCCD algo-415

rithm. Figure 9 shows the ROC and PR curves for the different detectors.416

As can be observed, the ROC curve for WCCD is considerable below the417

curves of all our defect detectors. Regarding the PR curves, WCCD attains418

higher precision than the contrast and symmetry-based detectors for certain419

values of recall, although the WCCD curve is below the curves corresponding420

to the three combined detectors (i.e OR, ORA and AND).421

In a second comparative assessment, we have used the defect detector422

presented in Bonnin-Pascual and Ortiz (2014a). This algorithm combines423

contrast and symmetry information through the Bayesian framework SUN424

(Zhang et al., 2008) to provide a saliency value for every pixel in the image.425

To be more precise, the saliency at a given pixel z is defined as:426

Sz =
1

p(F = fz)
p(F = fz|C = 1), (18)

where F represents the visual features associated to a pixel (contrast and/or427

symmetry in our case), fz represents the feature values observed at z, and428

C denotes whether a pixel belongs to the target class or not (1 = defective429
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area). Using this formulation, the saliency of a given pixel z decreases as the430

probability of feature fz gets higher, and increases as the probability of fz431

in defects increases. The Parzen windows method was applied once again to432

estimate those probabilities, using all the images of the dataset.433

Notice that, despite both approaches use contrast and symmetry as fea-434

tures to describe the defective areas, the SUN-based detector requires from435

a sort of training stage to estimate the probability distributions, and its fea-436

ture combination is performed within a probabilistic formulation while, in437

this work, we propose three different combinations inspired by logical oper-438

ators.439

To perform the assessment, we have used the complete dataset. Three440

different configurations of the SUN-based detector have been considered: us-441

ing only contrast, using only symmetry and using both features. These three442

configuration have been evaluated through Leave-One-Out-Cross-Validation443

(Duda et al., 2000) and their corresponding ROC/PR curves and AUC val-444

ues have been computed. Figure 10 compares these results with the ones445

obtained for the corresponding three configurations of our framework: us-446

ing only contrast, using only symmetry and using both features combined447

through the OR operator.448

As can be observed, the results obtained for the defect detection frame-449

work presented in this paper are very similar to the ones obtained using the450

SUN framework. This indicates that a successful defect detection can be451

attained using contrast and symmetry information without performing any452

training stage, as the SUN-based detectors do.453

In a fourth kind of experiment, we have checked the usability of the454
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defect detectors with images taken by the aerial robotic platform presented455

in Bonnin-Pascual et al. (2015). Regarding vessel inspection, this platform456

can be operated under inspection mode, what means, during image capture,457

constant and reduced speed (if it is not hovering) while keeping the same458

distance and orientation with regard to the front wall, to improve image459

quality.460

The aerial vehicle was flown in three different compartments of a bulk-461

carrier: a cargo hold, a top-side ballast tank, and the fore-peak tank. The462

operating conditions in each compartment were very different. On the one463

hand, the metallic plates inside the cargo hold did not exhibit corrosion which464

could be visually appreciated. On the other hand, the metallic surfaces inside465

the top-side and fore-peak tanks did present several corroded areas. Three466

datasets have been generated (one for each compartment) containing a total467

amount of 220 images. Ground-truth images have been manually produced468

in the same way as for previous datasets.469

To perform the assessment, the performance of our five defect detectors470

has been evaluated considering the datasets of the vessel compartments af-471

fected by corrosion. To be precise, Fig. 11 provides the results obtained for472

the top-side tank dataset, while Fig. 12 shows the curves corresponding to the473

fore-peak tank dataset. Additionally, Fig. 13 provides the metrics resulting474

when considering both ballast tanks.475

Unlike what happened with the original dataset, symmetry outperforms476

contrast for the datasets comprising images taken by the MAV in the top-side477

or/and the fore-peak tanks. On the one hand, the ROC curve obtained for478

symmetry attains a position closer to the (0, 1) corner than the curve ob-479

22



tained for contrast. On the other hand, symmetry results into considerably480

higher values of precision. Regarding the combined methods, the OR and481

AND combinations yield very similar results, and outperform all the other482

single and combined versions of the detector. Nevertheless, the ORA combi-483

nation presents slightly poorer performance due to the excessive importance484

given to the different channels of contrast: intensity, colour and orientation.485

A final experiment has been performed including also the images from the486

cargo hold dataset, so that all the images from the three vessel compartments487

have been considered. The performance metrics for this experiment can be488

found in Fig. 14. Remember that the images from the cargo hold do not489

present corroded areas, so that any positive detection dramatically increases490

the FPR and decreases the precision. In the ROC space, the three combined491

methods again provide better performance than the single-feature detectors.492

Regarding the PR curve, the OR and AND combinations outperform all the493

other versions of the detector, while the precision of the ORA combination is494

more reduced due to the poorer performance provided by the contrast-based495

method.496

By way of example, Fig. 15 shows an image for each dataset, together497

with its ground truth and the outputs provided by the five defect detectors.498

In a last experiment, the vehicle was flown in front of a 2.5 × 4 m surface499

containing corroded areas while the vision system was taking pictures at 10500

Hz. The collected images were then processed by the image mosaicing algo-501

rithm described in Garcia-Fidalgo et al. (2015), which managed to produce502

the seamless composite shown in Fig. 16 (A). Finally, the mosaic was anal-503

ysed using the five defect detectors, which provided the defect maps shown in504

23



Fig. 16 (C-G). Notice that the detector does not analyse the mosaic borders505

since contrast and symmetry levels can not be successfully computed in these506

areas. A ground truth image has been manually generated for the mosaic507

(see Fig. 16 (B)) in order to check the quality of the defect maps. As can be508

observed, lighter pixels in the defect maps, that is, those which are likelier509

to correspond to defects according to our detectors, are indeed labelled in510

white in the ground truth.511

5. Conclusions512

A novel approach for defect detection on vessel structures has been pre-513

sented. This has been devised as a generic framework that can be configured514

ad hoc, selecting the features (and the way to combine them) that pro-515

vide a more successful classification of the defective and non-defective areas.516

The detection framework can merge multi-scale information of the selected517

features to increase the robustness of the detection against changes in the518

distance to the inspected area while collecting the images.519

The selection of the features for our particular problem has been inspired520

by the idea of conspicuity and taking into account the kind of defects that521

appear in the metallic structures of vessels. Contrast in intensity, color and522

orientation, and isotropic symmetry have been the features selected. Three523

different combinations of these features inspired by logical operators have524

also been considered, in order to merge the information they convey and525

provide a better description of the defective situations.526

The different defect detectors have shown good classification performances,527

improving the results obtained from previous detectors. In comparison with528
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them, the presented approach does not require from tuning a large set of529

working parameters nor performing a previous training stage.530

Regarding the feature set, the results obtained for the different datasets531

indicate that contrast and symmetry complement each other, so that one can532

provide the proper information to discriminate whether an area is defective533

or not when the other feature maybe fails, and vice versa.534

The usability of the proposed solution has also been proved using images535

collected by a micro-aerial robotic platform devised for vessel inspection,536

which has been flown in different areas inside a bulk carrier.537

The experimental results have shown that the algorithm is also able to538

successfully detect defective areas in mosaics generated from these images.539

During a vessel inspection campaign, the use of mosaics allows us to extract540

more information about the state of the inspected surface since defective541

areas are not split over multiple images.542
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Figure 4: Implementation of the symmetry-based defect detector using the generic frame-

work.
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Figure 5: Set up of the normalization and combination stages for the defect detectors

merging contrast and symmetry information.

Figure 6: Estimated PDFs for contrast and symmetry features.
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Figure 7: Test images with their associated ground truth and resulting defect maps. A:

original image. B: ground truth. C and D: respectively, defect maps obtained using

contrast and symmetry. E, F and G: respectively, defect maps obtained from the OR,

AND and ORA combinations.
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Figure 8: Performance of the five defect detectors: (left) ROC curves and AUC values,

(right) PR curves.

Figure 9: Comparison between our defect detectors and the WCCD algorithm: (left) ROC

curves and AUC values, (right) PR curves.
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Figure 10: Comparison among the defect detectors presented in this work (i.e. using the

generic framework) and the SUN-based detectors: (left) ROC curves and AUC values,

(right) PR curves.

Figure 11: Performance of the five detectors evaluating images taken from a top-side

ballast tank inside a bulk carrier: (left) ROC curves and AUC values, (right) PR curves.
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Figure 12: Performance of the five detectors evaluating images taken from the fore-peak

tank of a bulk carrier: (left) ROC curves and AUC values, (right) PR curves.

Figure 13: Performance of the five detectors evaluating images taken from a top-side and

the fore-peak tanks of a bulk carrier: (left) ROC curves and AUC values, (right) PR

curves.
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Figure 14: Performance of the five detectors evaluating the images taken from three dif-

ferent spaces inside a bulk carrier, namely a cargo hold, a top-side ballast tank and the

fore-peak tank: (left) ROC curves and AUC values, (right) PR curves.
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Figure 15: Results for three images taken inside a bulk carrier: a cargo hold (left), a top-

side ballast tank (middle), and the fore-peak tank (right). A: original image. B: ground

truth. C and D: respectively, defect maps obtained using contrast and symmetry. E, F

and G: respectively, defect maps obtained from the OR, AND and ORA combinations.
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Figure 16: Detection results when inspecting an image mosaic. A: mosaic built from

images collected by the aerial vehicle. B: ground truth image manually generated. C

and D: respectively, defect maps obtained using contrast and symmetry. E, F and G:

respectively, defect maps obtained from the OR, AND and ORA combinations. In defect

maps, lighter pixels are likelier to correspond to defects (mosaic borders are not analysed).
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