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Abstract Vessel maintenance entails periodic visual inspec-
tions of internal and external parts of the hull in order to de-
tect the typical defective situations affecting metallic struc-
tures, such as coating breakdown, corrosion, cracks, etc. The
main goal of project MINOAS is the automation of the in-
spection process, currently undertaken by human surveyors,
by means of a fleet of robotic agents. This paper overviews
an approach to the inspection problem based on an autono-
mous Micro Aerial Vehicle (MAV) to be used as part of this
fleet and which is in charge of regularly supplying images
that can teleport the surveyor from a base station to the areas
of the hull to be inspected. The control software approach
adopted for the MAV is fully described, with a special em-
phasis on the self-localization capabilities of the vehicle. Ex-
perimental results showing the suitability of the platform to
the application are reported and discussed.

Keywords MAV · Visual odometry · Visual inspection ·
Vessels maintenance

1 Introduction

The movement of goods by ships is today one of the most
time and cost effective methods of transportation. The safety
of these vessels is overseen by the Classification Societies,
who are continually seeking to improve standards and re-
duce the risk of maritime accidents. However, despite the
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efforts on reducing them, they still occur and, from time to
time, have catastrophic consequences both in personal, envi-
ronmental and financial terms. Structural failures are a ma-
jor cause of accidents, and can usually be prevented through
timely maintenance. As such, vessels undergo annual in-
spections, with intensive Special and Docking Surveys every
five years, which ensure that the hull structure and related
piping are all in satisfactory condition and are fit for the in-
tended use over the next five years.

An important part of the vessel maintenance has to do
with the visual inspection of the external and internal parts
of the vessel hull. They can be affected by different kinds
of defects typical of steel surfaces and structures, such as
coating breakdown and/or corrosion, and cracks. These de-
fects are indicators of the state of the metallic surface and, as
such, an early detection prevents the structure from buckling
and/or fracturing.

To illustrate the enormity of the inspection task, the sur-
veying of a central cargo tank on a very large crude car-
rier (VLCC), involves checking over 860m of web frames
(primary stiffening members) and approximately 3.2km of
longitudinal stiffeners. Furthermore, this surveying is per-
formed in a potentially hazardous environment with both
flammable and toxic gases and significant heights involved.
Due to these complications, the total cost of a single survey-
ing can exceed $1M once you factor in the vessel’s prepara-
tion, use of yard’s facilities, cleaning, ventilation, and pro-
vision of access arrangements (see Fig. 1[left]). In addi-
tion, the owners experience significant lost opportunity costs
while the ship is inoperable.

The main objective of the EU-funded FP7 project MI-
NOAS (Marine INspection rObotic Assistant System) 1 is
the effective virtual teleportation of the surveyor to the dif-
ferent areas of the vessel hull that need inspection, so that

1 http://www.minoasproject.eu
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Fig. 1 (left) Staging required during a vessel inspection. (right) Oil
tanker in shipyard during construction

a reduction in the inspection time and the costs involved,
as well as an increase in the safety of the operation, can
be effectively achieved (see [24] for a detailed discussion).
Contrary to similar past projects (ROTIS and its follow-up
ROTIS-II [1]) or commercial solutions such as [23], the scope
of MINOAS comprises both dry and wet areas of the vessel,
and not only flooded ballast tanks or the external hull. The
MINOAS project is neither limited to tele-operated float-
ing tethered vehicles, but considers a varied set of robotic
technologies with different locomotion capabilities, includ-
ing magnetic crawlers, remotely operated vehicles (ROV)
and unmanned aerial vehicles (UAV).

Within this general context, this work presents an au-
tonomous Micro Aerial Vehicle (MAV) to be adopted as part
of the MINOAS re-engineered inspection process. Due to
its inherent properties for flying indoors and close to other
structures, a quadrotor has resulted in the platform of elec-
tion for this application. The MAV is described in this paper,
although the focus is mostly set on its control architecture
and specially on its self-localization capabilities. As men-
tioned, self-localization is achieved by means of a proper
combination of vision- and laser-based motion estimation.
In this regard, an almost-closed-form solution to visual odom-
etry is contributed as part of the development of the naviga-
tion strategy.

The rest of the paper is structured as follows: Section 2
discusses on the requirements imposed by the application
and reviews related work; Sections 3 and 4 describe, respec-
tively, the platform and the control architecture, focusing on
self-localization issues; Section 5 describes two monocular
odometers to be used as part of the localization strategy;
Section 6 provides experimental results showing the plat-
form performance; and, finally, Section 7 concludes the pa-
per.

2 Background

2.1 Inspection Problem and Requirements

To perform a complete hull inspection, the vessel has to be
emptied and situated in a dockyard, where typically tem-
porary staging, lifts, movable platforms, etc. need to be in-
stalled to allow the workers for close-up inspection —i.e.

to the reach of a hand— of the different metallic surfaces
and structures. For those ships where there is a real cost sav-
ing, i.e. the inspection is likely to result in no repair, so that
the preparation of the vessel for a human inspection with a
non-subsequent repair is less justified (see [24] for a deeper
analysis), the MINOAS concept involves the use of different
robotic platforms through a series of stages that altogether
can replace the in-situ human inspection.

Among others, the vertical structures that can be found
in vessel holds are of prime importance (see Fig. 1). To make
proper repair/no repair decisions, the surveyor must be pro-
vided with, among others, imagery detailed enough so as
to enable the remote visual assessment of these structures.
The MINOAS aerial platform is precisely intended to pro-
vide this kind of data by implementing the first stage of the
inspection mission. In this stage, the platform sweeps the
relevant metallic surfaces and grabs pictures at a rate com-
patible with its speed, in order to provide an overall view of
their condition. Those images must as well be tagged with
pose information, so that, on demand of the surveyor, the
areas suspected of being defective can be re-visited for ac-
quiring close-up images, taking thickness measurements (by
means of other platforms of the robot fleet), or even be com-
pared in a posterior inspection.

Therefore, the main requirements for the aerial platform
stem directly from the very nature of the inspection process:
the vehicle must be able to perform vertical, stationary and
low speed flight, as well as permit indoor flight. These re-
quirements rapidly discard fixed-wing aircrafts and focus
the search on helicopter-type UAVs, naturally capable of
manoeuvres such as hovering and vertical take-off and land-
ing (VTOL). Besides being a VTOL vehicle, the inspection
mission requires from the platform, apart from automatic
take-off and landing, flying through waypoints and obstacle
avoidance (i.e. a full navigation solution), since, from one
waypoint to the next, it is not necessarily ensured there is a
line of sight, and thus the vehicle must be able to overcome
the obstacles it might find during the flight. Finally, the plat-
form should not rely on GPS data for positioning because it
could be required to operate indoors or in poor GPS recep-
tion areas (e.g. due to satellites being occluded by the vessel
structures, multi-path effects, etc.).

2.2 Related Work

Among the different kinds of helicopter designs that have
been proposed, multi-rotor configurations present several ad-
vantages over comparably scale helicopters (see e.g. [12,
26]): (1) they do not require mechanical linkages to vary
rotor angle of attack as they spin, what simplifies the design
of the vehicle and reduces maintenance time and cost; (2)
the use of several rotors allows each individual rotor to have
a smaller diameter than the equivalent helicopter rotor, for a
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given vehicle size; and (3) flight is safer than for other heli-
copters because the small rotor size make them store less ki-
netic energy during flight, what reduces the damage in case
the rotors hit any object. This kind of UAV presents also
some disadvantages deriving from the multi-rotor configura-
tion, namely a larger weight and larger energy consumption
due to the extra motors. However, all in all, their particular
suitability for indoor flights and interaction in close prox-
imity to other objects (and also in obstacle-dense environ-
ments), with low risk of damaging the vehicle, its operators,
or its surroundings, seem to overcome the aforementioned
disadvantages.

Among other multi-rotor UAVs, the four-rotor, or quadro-
tor, is emerging as the most popular multi-rotor configura-
tion. This kind of vehicle consists of four rotors in total,
with two pairs of counter rotating, fixed-pitch blades lo-
cated at the four corners of the aircraft. In this platform,
the control of the vehicle motion is achieved by varying
the relative speed of each rotor. Moreover, because each
pair of rotor blades spin in opposite directions, they can-
cel out any torque, keeping the helicopter flying straight. As
a result, precise flight and stable hovering can be achieved.
Finally, counter rotating propellers increase efficiency and
flight times, as no extra thrust is needed to compensate for
unwanted rotation.

Lately, a number of navigation solutions comprising plat-
form stabilization, self-localization, mapping and obstacle
avoidance have been proposed for this kind of platforms.
They mainly differ in the sensor used to solve these tasks, the
amount of processing that is performed onboard/offboard
and the assumptions made about the environment.

The laser scanner is the most commonly used sensing
device, due to its accuracy and speed. In this regard, Gr-
zonka et al [15] present an open-source solution which en-
ables a small sized flying vehicle to operate indoors.
Dryanovski et al [13] design a system also based in open-
source components, showing experimental results for SLAM
and 3D mapping tasks. He et al [17] propose a solution for
planning vehicle trajectories using an unscented Kalman fil-
ter and a laser range finder. Bachrach et at [5] describe an-
other approach using the same kind of sensing devices.

Infrared or ultrasounds are other possible sensors to be
used for navigation tasks. Although they present less noise
tolerance and accuracy, several researchers [9,22,27] have
used them to perform navigation tasks in indoor environ-
ments, being a cheaper option than laser scanners.

Vision cameras have also been used. They are the cheap-
est option, although at a higher computational cost. Some
examples of this approach can be found in [3,7,10,18].

Some authors have combined different sources in order
to improve the accuracy of the localization process. For in-
stance, Achtelik et al [4] present a platform which combines

Fig. 2 The Micro Aerial Vehicle

laser scanners and vision cameras to autonomously navigate
in indoor environments.

As will be described later, in our case, a combination of
vision- and laser-based motion estimation has been adopted
for self-localization. Since the vertical structures that are
found in vessel holds do not vary in shape in a continu-
ous manner but are essentially the same along a large part
of their vertical extent and only change occasionally (see
Fig. 1), a full 3D mapping and navigation solution does not
result to be a critical requirement, what contributes to save
time for critical processes. Further, all flight safety-related
processing is performed onboard in order to reduce the use
of wireless datalinks, which are not favoured within vessel
holds due to the surrounding metallic structures.

Among the different tasks to solve and implement, this
paper focuses on platform motion estimation and self-locali-
zation, but does not address the obstacle avoidance issues.

3 Platform Description

Our MAV prototype is based on the well-known Pelican
quadrotor from Ascending Technologies (see Fig. 2). This
is a 50 cm-diameter platform with 25.4 cm propellers, able
to carry a payload of 650 g, and equipped with a barometric
pressure sensor for height estimation, a GPS receiver and
an inertial measuring unit (IMU), comprising a 3-axis gy-
roscope, a 3-axis accelerometer, and a 3-axis magnetome-
ter. Attitude stabilization control loops making use of those
sensors run over an ARM7 microcontroller as part of the
platform firmware; the manufacturer leaves almost free an
additional secondary ARM7 microcontroller, so that higher-
level control loops (e.g. a position controller) can also be run
onboard.

Furthermore, the MAV features a lightweight laser scan-
ner. Figure 2 shows the MAV carrying a Hokuyo URG-UTM-
30LX —up to 30 m range. As can be seen, the laser device
is also used, by deflection of lateral beams using mirrors, to
estimate distance to the floor as well as to the ceiling. This
method has been found more adequate for the application at
hand (the accuracy is around 1-3% of the distance travelled
by the beam), instead of using the barometric pressure sen-



4 Alberto Ortiz et al.

sor or the GPS, which tend to show large variations around
the true height, making height stabilization difficult when
the platform navigates indoors or relatively close to other
objects.

Visual information is collected by means of a flexible
vision system devised around an appropriate structure for
supporting one bottom-looking camera and two additional
units, which can be tailored for the particular inspection mis-
sion to be performed as: two forward-facing cameras form-
ing a stereo vision system, one camera facing forward and
the other facing up, or, to save weight, a single camera facing
forward. Figure 2 shows the second configuration, compris-
ing two uEye 1226-LE-C cameras, and a third uEye 1226-
LE-C fitted with a wide-angle lens oriented to the bottom.
All three cameras are intended to provide visual informa-
tion about the state of the surfaces under inspection, either
being at the front –e.g. web frames and walls in general–,
at the bottom –the floor– or above the platform –e.g. cross-
decks. A further analog video camera operating at 5.8GHz
is also attached to provide real-time imagery during flight.

Finally, the vehicle carries an additional processing board
which avoids sending sensor data to a base station, but pro-
cess it onboard avoiding communications latency inside crit-
ical control loops. This processor will be referred to as the
high-level processor from now on. (The configuration shown
in Fig. 2 includes a CoreExpress board equipped with an In-
tel Atom 1.6GHz processor and 1GB RAM).

4 Control Software

The control software architecture comprises at least two phys-
ically separated agents: the MAV itself and a base/ground
station. The different computational resources of the MAV
run the control algorithms (either as firmware or as software)
that are detailed next: (1) the main ARM7 controller essen-
tially runs the low-level software taking care of attitude sta-
bilization and direct motor control [16] (in Fig. 3, it appears
as the low-level controller); (2) the secondary ARM7 con-
troller runs the position controller described in [3] (in Fig. 3,
it appears as the high-level controller); and (3) the high-level
processor executes, on top of the Robot Operating System
(ROS [2]) running over Linux Ubuntu, ROS nodes providing
sensor sampling and platform motion estimation as well as
platform safety, interaction with the onboard platform con-
trollers and WiFi communication with the base station.

The base station supporting the MAV also runs ROS over
Linux Ubuntu. For this configuration, ROS becomes partic-
ularly relevant as it supplies the middleware functionality
for transparent messages exchange between processes irre-
spective of whether they run on the same or in different ma-
chines.

Those processes that can tolerate communications la-
tency are executed on the base station, while critical control

Fig. 3 Control architecture overview.

Fig. 4 Self-localization and mapping

Fig. 5 Mission execution

loops run onboard the vehicle in order to ensure minimum
delay, a requirement also reported by other authors [4] to
permit autonomous flying.

As well as the self-localization and mapping solution de-
scribed in [13], our MAV control software has been designed
around open-source components and following modularity
and software reutilization principles. In this way, adapting
the platform for different missions involving different pay-
loads, or the selective activation of software modules, can be
performed in a fast and reliable way. In this regard, ROS has
also proved to be specially useful and, in fact, has guided the
control software modularization.

Next sections comment on the details of the control ar-
chitecture, whose top-level logical components are depicted
in Fig. 3.
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1 <mission>

2 <gotoz z="1.0" spz="0.2" yaw="0.79" accpos="0.1" accori="0.0" timeout="30" stay_time="5.0" />

3 <takephoto camera="1" path="picture1.jpg" stay_time="5.0" />

4 <gotoxy x="2.0" y="0.0" spx="0.2" spy="0.2" yaw="0.79" accpos="0.1" accori="0.0" timeout="30" stay_time="5.0" />

5 <takephoto camera="1" path="picture2.jpg" stay_time="5.0" />

6 <gotoxy x="0.0" y="0.0" spx="0.2" spy="0.2" yaw="0.79" accpos="0.1" accori="0.0" timeout="30" stay_time="5.0" />

7 <gotoz z="0.0" spz="0.2" yaw="0.79" accpos="0.1" accori="0.0" timeout="30" />

8 </mission>

Fig. 6 Example of a mission specification file

4.1 Self-Localization and Mapping

Fig. 4 depicts the pose estimation system. It receives scan
data and attitude angles (ϕ ,θ ,ψ) from, respectively, laser
and IMU sensors and estimates the 3D pose of the vehicle.

Within this system, the Laser Pre-processing module pre-
pares raw laser scans for the rest of the system. More pre-
cisely, it is in charge of: (1) filtering the laser beams that
are of no interest; (2) splitting the laser scans into several
fragments, so that beams reflected by the lateral mirrors are
separated from beams providing information on the environ-
ment structure ahead; and (3) projecting the scans compris-
ing the surviving beams onto the ground, using the attitude
information provided by the IMU.

The Vertical Position module estimates the distance of
the robot to the ground and to the ceiling. It uses, respec-
tively, the laser beams which are deflected by the down-
looking and up-looking mirrors. Apart from being useful for
obstacle detection above and below the platform, depend-
ing on the mission and the environment, one or the other
measurement feeds the vehicle height controller while fly-
ing, keeping constant the desired altitude or distance to the
ceiling.

The Laser and Vision Odometer components contribute
to estimating the MAV 3D pose depending on the operation
mode: horizontal motion (HM) and vertical motion (VM).
In the HM mode, the vehicle moves over a plane paral-
lel to the ground, while in the VM mode, the vehicle as-
cends/descends along a vertical path to the desired height.
The former mode makes use of laser scans and a 2D map to
estimate the vehicle displacement, by means of laser-based
odometry and laser-based Simultaneous Localization and
Mapping (SLAM) . The second mode activates a ground-
looking vision-based odometer to keep the vehicle within a
vertical column during the motion without the use of any
map. This is a simple procedure that avoids running a com-
putationally intensive 3D mapping and navigation solution.
Notice also that the laser-based odometer and the vision-
based odometer do not need to run simultaneously, what
permits saving computational resources of the MAV’s high-
level processor.

Regarding the laser odometer, projected laser scans are
passed onto a scan matcher, which computes the platform

roto-translation between consecutive scans and estimates a
new 2D pose (x, y, ψ), using the yaw angle provided by the
IMU as initial estimate for ψ . The 2D pose so obtained is
then combined with the height and the roll and pitch angles
(ϕ ,θ ), provided by, respectively, the laser altimeter and the
IMU, to obtain a 3D pose for the vehicle.

In order to compensate the drift in the estimations pro-
duced by the scan matcher, a SLAM process is executed as
part of the SLAM module. It receives projected laser scans
and provides 2D corrections of the robot position and the
environment map. Due to its high computational needs, this
process runs on the base station. A further component within
the SLAM module, responsible for monitoring the correc-
tions provided by the SLAM, is executed onboard. This com-
ponent limits the SLAM corrections to prevent the robot
from moving in a too aggressive way within close environ-
ments. Furthermore, if the connection with the base station
is suddenly lost, it keeps the platform operating with the
last correction received. The public ROS package gmapping,
based on [14], provides the SLAM functionality.

About the vision-based odometer, it estimates the ve-
hicle roto-translation by matching visual features from one
frame to the next. Full details are given in Section 5.

4.2 Mission Execution

This module is responsible for the execution of the differ-
ent actions which an inspection mission can consist of. Ev-
ery action can refer to either sensor sampling or to platform
motion, as required at every time instant. The sequence of
actions is specified in a mission specification file. See Fig. 5
for an overview.

The Mission Control component is executed on the base
station and it is in charge of the accomplishment of the mis-
sion. The mission is described in an XML file as a sequence
of the following actions: (1) gotoxy, which specifies a 2D
pose to be attained by the vehicle, together with maximum
speeds and thresholds for considering the motion primitive
as accomplished; (2) gotoz, which specifies the height to
be attained by the vehicle, together with maximum speeds
and action-accomplishment thresholds; and (3) take-photo,
which requests for a picture to be taken by the robot using
one of the attached cameras.



6 Alberto Ortiz et al.

Just by way of illustration, the mission specification
shown in Fig. 6 makes the vehicle take off at a height of
1 meter and hover for 5 seconds (line 2), take a picture and
hover for 5 more seconds (line 3), move 2 meters in x and
hover for 5 seconds (line 4), take a picture and hover for 5
more seconds (line 5), go home and hover for 5 seconds (line
6), and, finally, land (line 7).

A client process, which is inside the Mission Control
module, parses the mission specification file and invokes the
corresponding tasks. A new action is sent if the previous one
succeeds before a specified timeout. Otherwise, the mission
is aborted and the vehicle hovers at the attained position.
This module is also responsible for handling goto and take-
photo actions. Actions of the first kind are pre-processed by
the Safety Manager module, which filters out motion com-
mands towards the high-level controller, while actions of the
second kind are sent to the camera driver for image grab-
bing.

Finally, the Safety Manager is in charge of filtering all
control commands before sending them to the Control In-
terface. Currently, it implements three safety behaviors: (1)
it prevents the robot from flying too high or too close to the
ceiling, (2) it monitors the battery voltage and sends com-
mands for landing when this is lower than a safety threshold,
and (3) it sends commands to make the robot hover when the
wireless connection with the base station is lost.

5 An Almost-closed-form Solution to Visual Odometry

This section describes a fast vision-based odometer for cam-
era motion estimation using local image features. It allows
estimating motion in x (∆x), y (∆y) and yaw (∆ψ). In short,
once a set of matchings between features of consecutive
frames is available, the algorithm backprojects features into
the ground using previous knowledge of the camera height
tz, and the roll ϕ and pitch θ angles, all three supplied by on-
board sensors. As will be seen, the odometer finally becomes
into a least squares problem for which two closed-form so-
lutions can be derived: the first one estimates cos∆ψ and
sin∆ψ assuming nothing about ∆ψ , while the second one
estimates ∆ψ directly, although requires ∆ψ to be small.

A further step refines the obtained solution in a non-
linear iterative way, reason by which the whole algorithm is
regarded as an almost-closed-form solution to visual odom-
etry.

Although within the vessel inspection application the
vision-based odometer is employed only during vertical mo-
tion, it is of general application, as will be shown in the ex-
perimental results section.

5.1 Derivation of the Odometer in Closed-Form Solution
for Generic Yaw Rotation

Assuming right-handed counter-clockwise frames for both
the vehicle and the camera, Eq. 1 transforms from world
(x,y,z) to image coordinates (xp,yp): (In the following, cα
and sα stand for, respectively, cosα and sinα .)


xp
yp
zp
1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1

f 1


︸ ︷︷ ︸

P

T R
Wb︷ ︸︸ ︷

1 0 0 0
0 cϕ sϕ 0
0 −sϕ cϕ 0
0 0 0 1


︸ ︷︷ ︸

Rx (roll)


cθ 0 −sθ 0
0 1 0 0

sθ 0 cθ 0
0 0 0 1


︸ ︷︷ ︸

Ry (pitch)

T R
Wa︷ ︸︸ ︷

cψ sψ 0 0
−sψ cψ 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

Rz (yaw)


1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1




x
y
z
1

 (1)

The corresponding inverse perspective transformation is thus:
x
y
z
1

=
(
T R

Wa
)−1︸ ︷︷ ︸

M∗

(
T R

Wb
)−1

P−1︸ ︷︷ ︸
M


xp
yp
zp
1

 (2)

where:

M∗ =


cψ −sψ 0 tx
sψ cψ 0 ty
0 0 1 tz
0 0 0 1



M =


M1 M2 M3 M4
M5 M6 M7 M8
M9 M10 M11 M12
0 0 − 1

f 1

=


cθ sθ sϕ sθ cϕ 0
0 cϕ −sϕ 0

−sθ cθ sϕ cθ cϕ 0
0 0 − 1

f 1


Equation 3 is obtained next by developing Eq. 2:

x
y
z
1

= M∗ M


xp
yp
zp
1



=


cψ −sψ 0 tx
sψ cψ 0 ty
0 0 1 tz
0 0 0 1




M1 xp +M2 yp +M3 zp +M4
M5 xp +M6 yp +M7 zp +M8

M9 xp +M10 yp +M11 zp +M12
f−zp

f



=


cψ −sψ 0 tx
sψ cψ 0 ty
0 0 1 tz
0 0 0 1




a
b
c
d

=


acψ −bsψ +d tx
bcψ +asψ +d ty

c+d tz
d

 (3)
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Dividing the expressions resulting for the first to the third
components by the fourth component (in Eq. 3), to pass from
homogeneous to Cartesian coordinates, Eq. 4 results:

v =

x
y
z

=

tx
ty
tz

+
f

f − zp

acψ −bsψ
bcψ +asψ

c

 (4)

Equation 4 involves coordinate zp, which turns out to
be a free parameter that determines the plane where the 2D
point (xp,yp) is located, or, in other words, the backprojec-
tion of the image point (xp,yp), so that zp =−∞ corresponds
to the lens center point vl , and zp = 0 is for a point vp situ-
ated over the image plane. Using points vl and vp, Eq. 4 can
be put in a more useful form:

v = vl +λ (vp − vl) (5)

Taking into account that:

lim
zp→−∞

f
f − zp

= 0

lim
zp→−∞

f
f − zp

zp = lim
zp→−∞

f
f

zp
−1

=− f

vl and vp can be obtained evaluating Eq. 4 for, respectively,
zp =−∞ and zp = 0:

vl = lim
zp→−∞

v =

tx
ty
tz

− f

M3 cψ −M7 sψ
M7 cψ +M3 sψ

M11

 (6)

vp =

tx
ty
tz

+

(M1 xp +M2 yp +M4)cψ − (M5 xp +M6 yp +M8)sψ
(M5 xp +M6 yp +M8)cψ +(M1 xp +M2 yp +M4)sψ

M9 xp +M10 yp +M12


(7)

Consequently, Eq. 5 becomes into the following 3D line
in world coordinates:x

y
z

=

tx
ty
tz

+

−M3 f cψ +M7 f sψ
−M7 f cψ −M3 f sψ

−M11 f

+λ ·

(M1 xp +M2 yp +M3 f +M4)cψ − (M5 xp +M6 yp +M7 f +M8)sψ
(M5 xp +M6 yp +M7 f +M8)cψ +(M1 xp +M2 yp +M3 f +M4)sψ

M9 xp +M10 yp +M11 f +M12


(8)

The previous line corresponds to the ray backprojecting an
image point (xp,yp) for a camera located at world coordi-
nates (tx, ty, tz) and oriented ψ in yaw, θ in pitch and ϕ in
roll.

Notice now that for image features corresponding to points
on the floor, z = 0 and, consequently:

λ =− tz −M11 f
M9 xp +M10 yp +M11 f +M12

(9)

Using Eq. 9, Eq. 8 can be written as follows for time k:

[
x
y

]
=

[
tx
ty

](k)
+

[
C+λ A −(D+λ B)
D+λ B (C+λ A)

](k) [cψ
sψ

](k)
(10)

with:

λ (k) =−
t(k)z −M(k)

11 f

M(k)
9 xp +M(k)

10 yp +M(k)
11 f +M(k)

12

A(k) = M(k)
1 xp +M(k)

2 yp +M(k)
3 f +M(k)

4

B(k) = M(k)
5 xp +M(k)

6 yp +M(k)
7 f +M(k)

8

C(k) =−M(k)
3 f

D(k) =−M(k)
7 f

Defining α(k) =C(k)+λ (k) A(k) and β (k) = D(k)+λ (k) B(k),
Eq. 10 can be written in a more compact form:

[
x
y

]
=

[
tx
ty

](k)
+

[
α −β
β α

](k) [cψ
sψ

](k)
(11)

At time k+ 1, if the vehicle has rotated in yaw ∆ψ and
has moved at (t(k)x +∆ tx, t

(k)
y +∆ ty, t

(k+1)
z ), and changed from

pitch θ (k) to θ (k+1) and from roll ϕ (k) to ϕ (k+1), for the same
scene point at world coordinates (x,y,z = 0), we have:

[
x
y

]
=

[
t(k)x +∆ tx
t(k)y +∆ ty

]
+

[
α −β
β α

](k+1) [cψ(k)c∆ψ − sψ(k)s∆ψ
sψ(k)c∆ψ + cψ(k)s∆ψ

]

=

[
t(k)x +∆ tx
t(k)y +∆ ty

]
+

[
α(k+1)cψ(k)−β (k+1)sψ(k)

β (k+1)cψ(k)+α(k+1)sψ(k)

−β (k+1)cψ(k)−α(k+1)sψ(k)

α(k+1)cψ(k)−β (k+1)sψ(k)

][
c∆ψ
s∆ψ

]
(12)

Equating 11 and 12 we can write:

[
αcψ −β sψ
βcψ +αsψ

](k)
=[

∆ tx
∆ ty

]
+

[
α(k+1)cψ(k)−β (k+1)sψ(k)

β (k+1)cψ(k)+α(k+1)sψ(k)

−β (k+1)cψ(k)−α(k+1)sψ(k)

α(k+1)cψ(k)−β (k+1)sψ(k)

][
c∆ψ
s∆ψ

]
(13)



8 Alberto Ortiz et al.

Equation 14 can next be obtained rearranging equation 13:[
1 0 α(k+1)cψ(k)−β (k+1)sψ(k) −β (k+1)cψ(k)−α(k+1)sψ(k)

0 1 β (k+1)cψ(k)+α(k+1)sψ(k) α(k+1)cψ(k)−β (k+1)sψ(k)

]

×


∆ tx
∆ ty

c∆ψ
s∆ψ

=

[
αcψ −β sψ
βcψ +αsψ

](k)
(14)

If tz, ϕ and θ are available at times k and k + 1 (from
onboard sensors or derived from image data), then a least
squares framework can be developed from equation 14 to
determine ∆ tx, ∆ ty, c∆ψ and s∆ψ if, at least for two scene
points (xi,yi,zi = 0), their image points counterparts (xp,i,yp,i)

have been matched between frames k and k+1:

1 0 α(k+1)
1 cψ(k)−β (k+1)

1 sψ(k) −β (k+1)
1 cψ(k)−α(k+1)

1 sψ(k)

0 1 β (k+1)
1 cψ(k)+α(k+1)

1 sψ(k) α(k+1)
1 cψ(k)−β (k+1)

1 sψ(k)

1 0 α(k+1)
2 cψ(k)−β (k+1)

2 sψ(k) −β (k+1)
2 cψ(k)−α(k+1)

2 sψ(k)

0 1 β (k+1)
2 cψ(k)+α(k+1)

2 sψ(k) α(k+1)
2 cψ(k)−β (k+1)

2 sψ(k)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 α(k+1)
n cψ(k)−β (k+1)

n sψ(k) −β (k+1)
n cψ(k)−α(k+1)

n sψ(k)

0 1 β (k+1)
n cψ(k)+α(k+1)

n sψ(k) α(k+1)
n cψ(k)−β (k+1)

n sψ(k)



×


∆ tx
∆ ty

c∆ψ
s∆ψ

=



α1cψ −β1sψ
β1cψ +α1sψ
α2cψ −β2sψ
β2cψ +α2sψ

. . .
αncψ −βnsψ
βncψ +αnsψ



(k)

(15)

Equation 15 can be expressed in a more compact form
as:

Ω


∆ tx
∆ ty

c∆ψ
s∆ψ

=Θ (16)

In this way, (∆ tx,∆ ty,∆ψ) can be estimated as the solu-
tion to the following least squares problem:

min
∆ tx
∆ ty
c∆ψ
s∆ψ

Ω


∆ tx
∆ ty

c∆ψ
s∆ψ

−Θ


2

(17)

which turns out to be:
∆ tx
∆ ty

c∆ψ
s∆ψ

= (Ω T Ω)−1Ω TΘ (18)

where

Ω T Ω =


n 0 A B
0 n −B A
A −B C 0
B A 0 C

 and Ω TΘ =


D
E
F
G

 (19)

and

A=
(
∑α(k+1)

i

)
cψ(k)−

(
∑β (k+1)

i

)
sψ(k)

B =−
(
∑β (k+1)

i

)
cψ(k)−

(
∑α(k+1)

i

)
sψ(k)

C = ∑
(

α(k+1)
i

)2
+∑

(
β (k+1)

i

)2

D =
(
∑α(k)

i

)
cψ(k)−

(
∑β (k)

i

)
sψ(k)

E =
(
∑β (k)

i

)
cψ(k)+

(
∑α(k)

i

)
sψ(k)

F = ∑α(k)
i α(k+1)

i +∑β (k)
i β (k+1)

i

G =−∑α(k)
i β (k+1)

i +∑β (k)
i α(k+1)

i

The solution to Eq. 17 in this case is given by:
∆ tx
∆ ty

c∆ψ
s∆ψ

=


AF −CD+BG
AG−CE −BF
AD−nF −BE
AE −nG+BD

/(A2 +B2 −nC) (20)

Observe that, since cos∆ψ and sin∆ψ are estimated
separately, it is not ensured cos2 ∆ψ +sin2 ∆ψ = 1. We deal
with this problem in a posterior refinement step.

5.2 Derivation of the Odometer in Closed-Form Solution
for Small Yaw Rotation

For small yaw rotations, c∆ψ ≈ 1 and s∆ψ ≈ ∆ψ . Equa-
tion 15 then becomes:

1 0 −β (k+1)
1 cψ(k)−α(k+1)

1 sψ(k)

0 1 α(k+1)
1 cψ(k)−β (k+1)

1 sψ(k)

1 0 −β (k+1)
2 cψ(k)−α(k+1)

2 sψ(k)

0 1 α(k+1)
2 cψ(k)−β (k+1)

2 sψ(k)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 0 −β (k+1)
n cψ(k)−α(k+1)

n sψ(k)

0 1 α(k+1)
n cψ(k)−β (k+1)

n sψ(k)



∆ tx
∆ ty
∆ψ



=



(α(k)
1 −α(k+1)

1 )cψ(k)− (β (k)
1 −β (k+1)

1 )sψ(k)

(β (k)
1 −β (k+1)

1 )cψ(k)+(α(k)
1 −α(k+1)

1 )sψ(k)

(α(k)
2 −α(k+1)

2 )cψ(k)− (β (k)
2 −β (k+1)

2 )sψ(k)

(β (k)
2 −β (k+1)

2 )cψ(k)+(α(k)
2 −α(k+1)

2 )sψ(k)

. . .

(α(k)
n −α(k+1)

n )cψ(k)− (β (k)
n −β (k+1)

n )sψ(k)

(β (k)
n −β (k+1)

n )cψ(k)+(α(k)
n −α(k+1)

n )sψ(k)


(21)
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which avoids having to take care ∆ψ satisfies (c∆ψ)2 +
(s∆ψ)2 = 1. In this case, the solution to the (reduced) least
squares problem:

min
∆ tx
∆ ty
∆ψ

Γ

∆ tx
∆ ty
∆ψ

−Λ

2

(22)

turns out to be:∆ tx
∆ ty
∆ψ

= (Γ T Γ )−1Γ T Λ (23)

where

Γ T Γ =

n 0 B
0 n A
B A C

 and Γ T Λ =

D−A
E+B
G

 (24)

The solution to Eq. 17 is now given by:

∆ tx
∆ ty
∆ψ

=

−ABE+A2D−A3−AB2+nAC+nBG−nCD
n

−ABD+A2B+B3+EB2−nBC+nAG−nCE
n

BD+AE −nG


/(A2 +B2 −nC) (25)

5.3 Non-Linear Refinement and Filtering

As discussed in the previous sections, neither the odometer
for generic yaw rotation nor the odometer for small yaw ro-
tation have to necessarily produce an optimal estimation (in
the least-squares sense) of the 2D roto-translation (∆ tx,∆ ty,
∆ψ) performed by the vehicle because the former does not
ensure the solution meets cos2 ∆ψ + sin2 ∆ψ = 1, while the
latter has been dervied assuming ∆ψ is small. However,
both solutions can be used as the point of departure within
a non-linear iterative optimization framework. To this end,
Eq. 17 is re-arranged as a non-linear optimization problem
aiming at minimizing directly for (∆ tx,∆ ty,∆ψ):

min
∆ tx
∆ ty
∆ψ

Ω


∆ tx
∆ ty

c∆ψ
s∆ψ

−Θ


2

(26)

The Levenberg-Marquardt algorithm is used to this purpose,
and more precisely the implementation described in [20].

After the addition of this step, the algorithm cannot be
regarded as a closed-form solution to visual odometry. How-
ever, since experiments show that a few iterations (5-10) are
enough to attain the minimum, i.e. the solutions of both
odometers are close to the optimum values, we consider
them both as almost-closed-form solutions.

5.4 Visual Odometer Structure

Figure 7 summarizes the structure of the visual odometer.
As can be observed, matchings are filtered before the

closed-form motion estimation stage runs in order to re-
move false matchings that can distort the least-squares es-
timation process. Matchings are discarded if the image loca-
tions of previous-frame and current-frame features for any
matching are incompatible with vehicle speed (i.e. they are
too far away from one another), and also if the distance be-
tween feature descriptors does not verify the distance ratio
test [21].

Finally, the last stage of the motion estimation process
involves a discrete Kalman filter to counteract sensor noise.
The filter assumes constant acceleration, so that the state and
measurement vectors are, respectively, given by (ẋ, ẍ)T =
(ṫx, ṫx, ψ̇, ẗx, ẗy, ψ̈)T and ∆x = (∆ tx,∆ ty,∆ψ)T :[

ẋ
ẍ

]k

=

[
I ∆T
0 I

][
ẋ
ẍ

]k−1

+Q,
[
∆x

]k
=
[
∆T 0

][ẋ
ẍ

]k

+R

(27)

where ∆T = (∆ t)I3×3 and ∆ t is the filter sampling period.

6 Experimental Results

This section reports performance results for the two visual
odometers described in Section 5, generic yaw rotation
(GEN) and small yaw rotation (SMA, Small Angle Approx-
imation), as well as for the full system during a field ex-
periment. Results for the laser-based odometer alone can be
found in [8].

6.1 Assessment of the Visual Odometers

The publicly available datasets 1LoopDown (DS1), 2Loops-
Down (DS2), 3LoopsDown (DS3) and hoveringDown (DS4)
made public by project sFly 2 have been used to quantita-
tively assess the two visual odometers. The datasets were
collected from a quadrotor flying, respectively, 1, 2 and 3
loops, and hovering within a space of approximately 6m ×
3m. These datasets comprise ground truth from a Vicon sys-
tem and images from a ground-looking camera, as well as
height and IMU data. See [19] for a detailed description of
the datasets.

To measure the performance of the visual odometry ap-
proach described in Section 5, different conditions of oper-
ation have been considered, comprising a total of nine com-
binations of feature detectors and descriptors and the two
odometers. The combinations of feature detectors and de-
scriptors consider both classical, well-known methods such

2 http://www.sfly.org/mav-datasets
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Fig. 7 Summary of the visual odometer

as SIFT [21] and SURF [6], and relatively new fast detec-
tors and descriptors with less computational requirements:
FAST [28], ORB [29], BRIEF [11], and FREAK [25]. The
Good Features To Track (GFTT) detector available in
OpenCV 3 has also been included in the set of combina-
tions. Regarding roll ϕ and pitch θ angles, the odometers
are fed using both Vicon data (best conditions of operation)
or IMU data (typical conditions of operation), depending on
the experiment, while height tz is always taken from Vicon
data.

During the off-line experiments, GEN and SMA both
leaded to the same estimation results (the latter required a bit
less computation), what indicates that both produce estima-
tions close to the least-squares optimum that finally attains
the posterior non-linear refinement step 4. Results are thus
only provided for GEN. Figure 8 and Tables 1 and 2 show
the performance data collected, measured as average error
in x, average error in y and average error in yaw, where
Vicon data are used as ground truth. Frames per second for
every combination is also provided. The related execution
times correspond to an Intel Core i5 @2.53GHz processor.
In the figures and in the tables, DSi refer to dataset i, while
All refers to the full set of frames (almost 6700 in total).

As can be observed, best motion estimation results are
obtained for the combination consisting of ORB both for
feature detection and description when using IMU data for
the roll and pitch angles, while FAST-ORB turns out to be
the best when using Vicon data. In general, ORB used as
a descriptor tends to produce the best estimations. In view
of the quantitative data collected, a less computationally in-
tensive option is FAST as detector and BRIEF or FREAK as
descriptors. Under typical conditions of operation, the ORB-
ORB combination leads to 11-cm-error in X, 10-cm-error in
Y and 2-degree-error in yaw, while FAST-BRIEF/FREAK
increases the average error in X and Y up to, respectively,
26/27 cm and 11 cm, and 2.30/3.34 degrees in yaw. By way
of illustration, 2D plots of the estimated and ground truth
(Vicon) paths for DS2 and the ORB-ORB combination us-
ing IMU data can be found in Fig. 9(a).

To finish, Fig. 9(b-d) show results for an online experi-
ment where the MAV is controlled by the output of the GEN

3 http://opencv.org/
4 It typically required no more than 7-8 iterations to attain conver-

gence.

odometer. The different colours in the figure correspond to
the paths estimated during three different repetitions of the
mission, consisting in taking off, hovering at a certain alti-
tude, increase height, hover at the new height, and finally
land. For the whole set of repetitions, standard deviations in
X and Y during the full experiment (resp. σX and σY ) were
around 7 cm in X and 6 cm in Y.

6.2 Field Experiment

This section presents results for an online experiment in-
tended to show the suitability of the full hardware/software
solution adopted for the inspection tasks described in pre-
vious sections. This experiment took place onboard a cargo
hold of a containership, comprising a total volume of 2572
m3 (approx. 20× 12.50× 10 m (L×W×H), see Fig. 10(a)
and (b)). The mission description file specified a sweep-
ing task, consisting in achieving a collection of waypoints
along a zig-zag-like path (see Fig. 10(c)). The experiment,
whose results can be found in Fig. 11 as the paths estimated
by the MAV during the autonomous flights, was performed
several times, as before, to compare results between con-
secutive executions. No ground truth data were available
on this occasion for quantitative assessment. Nevertheless,
as can be noticed, the estimated paths are consistent with
the environment, as well as the map produced by the laser-
based SLAM strategy adopted, what suggests the validity
of the approach. The small differences which can be ob-
served in these paths are due to, among other factors, the ac-
curacy parameter included in the mission specification file
that determines when an action has succeeded or not (set
to 0.1 meters for this experiment). Pictures taken at some
of the waypoints by the onboard cameras can be found in
Fig. 12. A video of this mission and others in different en-
vironments can be found in the MINOAS Youtube channel
http://www.youtube.com/user/MINOASProject.

7 Conclusions

A Micro Aerial Vehicle intended to assist human surveyors
during visual inspections of vessels has been described. It is
based on a commercial platform which integrates a control
architecture intended to cover the requirements imposed by
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the inspection missions. The details and organization of the
control software required to reply to these requirements have
been described and discussed. Two vision-based odometers
contributing to the MAV self-localization have also been de-
rived and thoroughly tested off-line and online. Results for
the platform performing a typical mission have also been
reported. All in all, the different experimental results gath-
ered suggest the platform proposed (hardware and software)
are appropriate for the visual inspection mission described
in this paper.

Nevertheless, some improvements are foreseen for the
near future, such as advancing on the fusion of the laser-
and vision-based odometers, what would require, in turn,
upgrading the computational capabilities onboard the plat-
form to be able to run them both simultaneously. A bene-
ficial side effect of the latter would be the reduction of the
dependence of the platform on the wireless link, a critical
point of the MAV-based approach due to the metallic nature
of the environment where the inspections take place.
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Table 1 Performance measures for the SMA odometer and various combinations of feature detectors and descriptors. Roll ϕ and pitch θ angles
are set from Vicon data. Height tz also comes from Vicon data. Performance is measured as difference with ground truth data: (a) error in X [m],
(b) error in Y [m], (c) error in yaw [deg], and (d) frames per second

(a) (b)
DS1 DS2 DS3 DS4 All

no. frames 640 1653 2373 2026 6692
FAST-BRIEF 0.21 0.18 0.23 0.06 0.17
FAST-FREAK 0.18 0.10 0.16 0.10 0.13

FAST-ORB 0.16 0.08 0.09 0.05 0.08
GFTT-BRIEF 0.18 0.20 0.25 0.05 0.17
GFTT-FREAK 0.07 0.20 0.17 0.06 0.13

GFTT-ORB 0.17 0.10 0.13 0.05 0.10
ORB-ORB 0.30 0.23 0.26 0.05 0.19
SIFT-SIFT 0.24 0.28 0.36 0.06 0.24

SURF-SURF 0.35 0.39 0.46 0.07 0.32

DS1 DS2 DS3 DS4 All
no. frames 640 1653 2373 2026 6692

FAST-BRIEF 0.11 0.14 0.15 0.11 0.13
FAST-FREAK 0.11 0.13 0.16 0.08 0.12

FAST-ORB 0.10 0.07 0.07 0.14 0.09
GFTT-BRIEF 0.11 0.12 0.13 0.12 0.12
GFTT-FREAK 0.12 0.08 0.12 0.11 0.11

GFTT-ORB 0.09 0.06 0.06 0.11 0.08
ORB-ORB 0.12 0.11 0.12 0.10 0.11
SIFT-SIFT 0.12 0.16 0.18 0.13 0.15

SURF-SURF 0.13 0.16 0.19 0.11 0.16

(c) (d)
DS1 DS2 DS3 DS4 All

no. frames 640 1653 2373 2026 6692
FAST-BRIEF 6.70 6.57 8.19 2.54 5.94
FAST-FREAK 5.84 4.04 5.54 2.25 4.20

FAST-ORB 5.14 2.44 2.90 2.08 2.75
GFTT-BRIEF 5.88 6.40 8.32 2.53 5.86
GFTT-FREAK 2.66 2.06 2.87 3.22 2.76

GFTT-ORB 5.28 2.95 3.42 2.27 3.13
ORB-ORB 8.43 7.52 8.88 2.59 6.60
SIFT-SIFT 7.37 9.76 12.55 1.69 8.08

SURF-SURF 9.18 11.80 15.42 1.51 9.72

DS1 DS2 DS3 DS4 All
no. frames 640 1653 2373 2026 6692

FAST-BRIEF 195.60 188.01 180.46 131.76 164.86
FAST-FREAK 100.66 123.02 108.05 75.40 97.51

FAST-ORB 125.61 204.93 126.36 100.10 128.25
GFTT-BRIEF 83.22 111.59 83.16 74.96 85.72
GFTT-FREAK 79.47 101.14 76.67 65.16 77.42

GFTT-ORB 85.76 106.21 80.00 72.90 83.15
ORB-ORB 56.77 64.89 52.53 44.12 52.35
SIFT-SIFT 18.87 20.05 18.54 15.72 17.93

SURF-SURF 14.94 15.19 14.29 12.62 13.99

Table 2 Performance measures for the GEN odometer and various combinations of feature detectors and descriptors. Roll ϕ and pitch θ angles
are set from IMU data. Height tz comes from Vicon data. Performance is measured as difference with ground truth data: (a) error in X [m], (b)
error in Y [m], (c) error in yaw [deg], and (d) frames per second

(a) (b)
DS1 DS2 DS3 DS4 All

no. frames 640 1653 2373 2026 6692
FAST-BRIEF 0.10 0.31 0.37 0.14 0.26
FAST-FREAK 0.14 0.27 0.38 0.20 0.27

FAST-ORB 0.15 0.32 0.35 0.14 0.26
GFTT-BRIEF 0.23 0.43 0.45 0.13 0.32
GFTT-FREAK 0.28 0.47 0.49 0.14 0.36

GFTT-ORB 0.26 0.33 0.34 0.11 0.26
ORB-ORB 0.12 0.07 0.13 0.11 0.11
SIFT-SIFT 0.09 0.15 0.25 0.16 0.18

SURF-SURF 0.12 0.18 0.19 0.16 0.17

DS1 DS2 DS3 DS4 All
no. frames 640 1653 2373 2026 6692

FAST-BRIEF 0.16 0.10 0.09 0.12 0.11
FAST-FREAK 0.17 0.11 0.10 0.09 0.11

FAST-ORB 0.14 0.08 0.09 0.14 0.11
GFTT-BRIEF 0.16 0.08 0.07 0.12 0.10
GFTT-FREAK 0.17 0.10 0.09 0.12 0.11

GFTT-ORB 0.12 0.09 0.09 0.11 0.10
ORB-ORB 0.13 0.09 0.08 0.11 0.10
SIFT-SIFT 0.18 0.16 0.16 0.13 0.15

SURF-SURF 0.17 0.16 0.16 0.12 0.15

(c) (d)
DS1 DS2 DS3 DS4 All

no. frames 640 1653 2373 2026 6692
FAST-BRIEF 1.85 2.93 2.57 1.61 2.30
FAST-FREAK 2.04 4.85 4.20 1.50 3.34

FAST-ORB 2.28 7.49 7.91 1.13 5.21
GFTT-BRIEF 2.60 5.31 4.58 2.06 3.81
GFTT-FREAK 5.88 10.54 11.78 3.04 8.26

GFTT-ORB 3.13 8.78 9.31 1.65 6.27
ORB-ORB 3.57 1.82 2.03 1.61 2.00
SIFT-SIFT 3.45 4.61 7.21 2.32 4.73

SURF-SURF 3.68 6.44 7.46 2.09 5.22

DS1 DS2 DS3 DS4 All
no. frames 640 1653 2373 2026 6692

FAST-BRIEF 143.53 137.24 131.61 101.59 122.84
FAST-FREAK 113.90 112.79 107.67 75.62 96.84

FAST-ORB 132.09 131.07 126.59 101.16 119.01
GFTT-BRIEF 83.80 83.80 82.66 74.75 80.46
GFTT-FREAK 75.26 76.69 76.41 65.41 72.67

GFTT-ORB 70.54 80.23 79.56 73.53 76.87
ORB-ORB 53.83 54.19 52.62 44.30 50.23
SIFT-SIFT 18.76 18.99 18.53 15.73 17.70

SURF-SURF 14.89 14.58 14.23 12.60 13.83
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Fig. 8 Performance measures for the GEN odometer and various combinations of feature detectors and descriptors. Roll ϕ and pitch θ angles are
set from Vicon (a-d) or from IMU data (e-h). Height tz comes from Vicon data. Performance is measured as difference with ground truth data: (a,e)
error in X [m], (b,f) error in Y [m], (c,g) error in yaw [deg], and (d,h) frames per second
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Fig. 9 (a) 2D plot for DS2 of estimated and ground truth paths for the GEN odometer, using IMU data, and ORB as detector and descriptor. (b)
3D plot of estimated paths for the online experiment, using FAST as detector and FREAK as descriptor, (c) XZ projection, (d) YZ projection.
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Fig. 10 (a) Containership and (b) hold where the field experiment took place. (c) Waypoints sequence for the online experiment: 0 / 1 / 2 / 3 / 4 /
5 / 6 / 5 / 7 / 8 / 9 / 10 / 11 / 12 / 13 / 14 / 15 / 8 / 1 / 0
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(a) (b)

Fig. 11 Three executions of the field experiment, shown in different colours: (a) 3D plot of estimated MAV trajectories, (b) map produced by the
laser-based SLAM module with the estimated MAV 2D paths superimposed

Fig. 12 Pictures taken (from left to right and from top to bottom) at waypoints 1, 2, 3, 4, 8 and 9 during the first repetition of the field experiment


