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A Flying Tool for Sensing Vessel Structures Defects
using Image Contrast-based Saliency

Francisco Bonnin-Pascual and Alberto Ortiz, Member, IEEE,

Abstract—Vessels have to undergo regular visual inspections in
order to detect the typical defective situations affecting metallic
structures, such as cracks and corrosion. These inspections are
nowadays performed manually by ship surveyors at a great cost.
Assisting them during the inspection process by means of e.g. a
fleet of robots capable of defect detection would, without doubt,
decrease the inspection cost. In this paper, a robotic sensor
for visual defect detection on vessel structures is presented. Its
hardware comprises a micro-aerial platform, a suite of navigation
sensors and vision cameras, to provide a close-up view of the
vessel surface under inspection. The software architecture has
been designed around the supervised autonomy paradigm, so
that the user is introduced in the position control loop while the
platform is in charge of providing functionalities such as collision
prevention and other self-preservation issues. The inspection tool
is completed with a vision-based defect detector that labels those
areas that are suspicious of being affected by corrosion or cracks.
Both hardware and software architectures have been assessed for
the vessel inspection task with good results.

Index Terms—Defect detection, Vessel inspection, Corrosion,
Cracks, Saliency, Micro-Aerial Vehicle.

I. INTRODUCTION

Vessels and ships are nowadays one of the most cost
effective ways to transport goods around the world. Despite the
efforts to avoid maritime accidents and wreckages, these still
occur, and, from time to time, have catastrophic consequences
in environmental, human and/or economic terms. Structural
failures are the main cause of these accidents and, as such,
Classification Societies impose extensive inspection schemes
in order to ensure the structural integrity of vessels.

An important part of the vessel maintenance has to do with
the visual inspection of the internal and external parts of the
vessel hull. They can be affected by different kinds of defects
typical of steel surfaces and structures, such as cracks and
corrosion. These defects are indicators of the state of the
metallic surface and, as such, an early detection prevents the
structure from buckling and/or fracturing.

To carry out this task, the vessel has to be emptied and
situated in a dockyard where high scaffoldings are installed to
allow the human inspectors to access the highest parts of the
vessel structure (more than 30 m high). Taking into account the
huge dimensions of some vessels, this process can mean the
visual assessment of more than 600,000 m2 of steel. Besides,
the surveys are on many occasions performed in hazardous
environments for which the access is usually difficult and the
operational conditions turn out to be sometimes extreme for
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human operation. Moreover, total expenses involved by the
infrastructure needed for close-up inspection of the hull can
reach up to one million dollars for certain sorts of vessels (e.g.
Ultra Large Crude Carriers, ULCC). Therefore, it is clear that
any level of automation of the inspection process that can
lead to a reduction of the inspection time, a reduction of the
financial costs involved and/or an increase in the safety of the
operation is fully justified.

The European projects MINOAS1 (finished on 2012) and
INCASS2 (in development until 2016) have among their goals
the development of robotic devices to assist and simplify the
vessel inspection. Within this context, this paper presents a
Flying Defect Detector Sensor (FDDS from now on) intended
for the vessel visual inspection. This device comprises two
main parts: on the one hand, a robotic platform devised to fulfil
all the hardware, sensing and control-related requirements that
ensure a proper, safe and easy visual inspection; on the other
hand, a defect detector based on computer vision and able to
indicate the surveyor which areas of the vessel structure seem
to be affected by some kind of defective situation, such as a
crack or corrosion. As a whole, the defect detection sensor has
been devised to be easy to use, to be used by vessel surveyors,
not necessarily initiated in controlling/piloting robotic devices.

The rest of the paper is organized as follows: Section II
overviews the relevant literature; Section III presents the
robotic device that implements our flying defect detection
platform, describing its hardware (III-A) and control software
architecture (III-B); Section IV details the vision-based defect
detection algorithm; Section V reports on the results of some
experiments; and Section VI concludes the paper.

II. RELATED WORK

This section covers three different areas of related work:
(1) robotic platforms devised for vessel hull inspection, (2)
micro-aerial vehicles (MAVs) intended for visual inspection,
and (3) defect detection algorithms based on image analysis.

A. Robots for Vessel Hull Inspection

Robotics literature contains several contributions about
robots for vessel hull inspection. The Lamp Ray [1] consists
in a Remotely Operated Vehicle (ROV) that delivers data on
hull plate thickness, form and coating condition. An acoustic
beacon positioning system is used for navigation, while a
noncontact underwater ultrasonic (US) thickness gauge and
different kinds of probes are used for sensing the hull state.

1http://www.minoasproject.eu
2http://www.incass.eu
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The AURORA underwater robot [2] is another hull crawling
robot that can clean a vessel from marine fouling, while
simultaneously inspects the state of the hull by means of a
US probe and cameras. A stereo-vision system for automated
ship-hull inspection is presented in [3]. It is integrated in
a free-floating Autonomous Underwater Vehicle (AUV) with
capabilities for positioning, navigation and mapping of the
vessel hull. Similarly, the HAUV underwater robot [4] employs
a Doppler Velocity Logger (DVL) for hull-relative navigation
and control. Ref. [5] presents a mechanical contact mechanism
that allows an ROV to keep a suitable position and orientation
for improved visual inspection. In a more recent work [6],
advanced techniques in underwater saliency-informed Simulta-
neous Localization and Mapping (SLAM) are used to relocate
an AUV in a multiple session hull inspection.

Other approaches focus on the use of robots magnetically
attached to the vessel hull. SIRUS [7] and MARC [8] make use
of magnetic tracks to attach to the dry part of the hull. They
both are equipped with US thickness measurement sensors
and cameras. A lightweight crawler for fast deployment was
developed within the MINOAS project [9]. Because self-
localization is not feasible in such a lightweight vehicle,
the position of the robot is estimated using an external 3D
tracking system that consists of a camera and a laser range
finder mounted on a pan-tilt unit. Regarding submerged hull
inspection, the vehicle presented in [10] is aimed for US-based
underwater inspections of Floating, Production, Storage and
Offloading (FPSO) units.

Concerning aerial robots, only the robot presented in [11]
is specifically devised for vessel visual inspection. This au-
tonomous robot, which was also developed within the MI-
NOAS project, makes use of a laser scanner for localization
and mapping, assuming vertical similarity of the vessel struc-
ture. Nevertheless, there are many other approaches for aerial
visual inspection in other environments, which are outlined in
the following section.

B. Aerial Robots for Visual Inspection

The rising of aerial robotics has resulted in a number of
approaches in the visual inspection field. Some scenarios for
industrial and generic visual inspection using aerial vehicles
are presented in [12], where the platform requirements are
discussed as well. Such inspections are usually performed
in GPS-denied environments where motion tracking systems
can not be installed. For this reason, aerial platforms for
inspection must estimate their state (attitude, velocity and/or
position) relying on inner sensors and, on many occasions,
using onboard computational resources. Many approaches fuse
visual (typically stereo) and inertial data to estimate the vehicle
state (see for example [13] and [14]). Some others make use
of laser range finders for positioning and mapping ( [11] and
[15]), while the camera is only used for the inspection task.
Finally, some contributions rely on the specific configuration
of the element under inspection. That is case of [16], which
is intended for the inspection of pole-like structures.

C. Defect Detection Algorithms

The vision literature contains a large list of approaches
for vision-based defect detection. For our particular task,
we are interested in those which are devised to ensure the
integrity of elements or structures that have been subjected
to some kind of effort or stress. These methods are typi-
cally included in periodical surveys to assess the need of
maintenance operations. We can find algorithms for crack
detection on concrete surfaces [17], defect detection on bridge
structures [18], aircraft surface inspection [19], [20], etc.

Most algorithms have been developed for the detection of
a specific defect on a particular material or surface, while
much less methods deal with unspecified defects on general
surfaces. The short distance from which the images must be
taken is another point in common among the majority of the
algorithms. Furthermore, to provide good results, most of them
require from a learning stage or/and a tuning of their operating
parameters.

Regarding defect detection algorithms for vessel structures,
just a few contributions can be found in the literature:
e.g. [21], [22] and [23] present some detectors of cracks and
corrosion in vessel structures. These algorithms do not need
close-up images of the inspected surfaces to provide good
results but their drawback is again that they require a previous
training and/or tuning stage.

III. THE FLYING DEFECT DETECTION PLATFORM

The robotic platform has been developed as an aerial device
that effectively teleports the vessel surveyor to the hull points
requiring inspection. This platform is intended to be operated
by a non-expert. To this end, it has been devised to be easy-
to-use to allow him/her to focus on the inspection at hand,
while disregarding all the control or safety-related issues. In
other words, the surveyor is intended to feel that he/she is just
moving a camera through the vessel structure. The following
sections explain how this has been achieved.

A. Hardware Architecture

The robotic platform has been developed starting from a
VTOL (vertical take-off and landing) multirotor aerial vehicle.
The software architecture has been designed to be flexible
to be hosted by different commercial platforms. These are
typically equipped with and inertial measuring unit (IMU) and
an onboard microcontroller that executes the attitude control
loop. Higher-level control loops (e.g. position or velocity
controllers) usually have to be developed by the user, and are
executed on the same (if it is programmable) or on a secondary
microcontroller.

To this initial configuration, we have incorporated the sensor
suite necessary to provide the control architecture with 3D
velocity and height estimation, as well as obstacle detec-
tion capabilities. Different sensor configurations have been
installed depending on the payload capacity of the aerial
platform. In this way, less powerful platforms (e.g. the Asctec
Hummingbird, whose payload is 200 g) have been fitted with
two optical-flow sensors PX4Flow [24] to estimate the velocity
and distance regarding the ground and/or the inspected wall,
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Fig. 1. Sensor suite of our Flying Defect Detection Sensor implemented over
an Asctec Firefly platform: (blue) optical-flow sensors, (red) ultrasound range
sensors, (purple) optical range sensor, (green) camera.

and two US range sensors Maxbotix HRLV-EZ4 for obstacle
detection at both sides of the platform.

Regarding platforms with higher payload capacity (e.g. the
Asctec Pelican, whose payload is 650 g), a lightweight laser
scanner Hokuyo UST-20LX is used for both 2D velocity
estimation (via laser-scan matching) and obstacle detection.

Additionally, all the platforms have been fitted with an
optical range sensor Lidar-lite for height and vertical speed
estimation, as well as one or more cameras uEye used to
collect the requested images from the vessel structures. By
way of summary, Fig. 1 shows a bottom view of the Asctec
Firefly platform fitted with part of the sensor suite.

Finally, each vehicle carries an additional embedded PC
which allows processing sensor data onboard. The specific
board installed depends once again on the payload capacity
of the platform. The configuration shown in Fig. 1 includes
a Mastermind board featuring an Intel Core 2 Duo 1.86 GHz
processor and 4 GB RAM.

B. Control Software Architecture

The robotic platform implements a control architecture that
follows the supervised autonomy (SA) paradigm [25]. This
is a human-robot framework where the robot implements a
number of autonomous functions, including self-preservation
and other safety-related issues, which make simpler the in-
tended operations for the user. Within this framework, we use
a joystick to introduce qualitative commands and a graphical
user interface (GUI) to receive the robot feedback.

In more detail, the control software has been organized
around a layered structure, as shown in Fig. 2 (left). On the
one hand, the low-level control layer implementing attitude
stabilization and direct motor control executes over the main
microcontroller. On the other hand, mid-level control, running
over a secondary microcontroller, comprises height and veloc-
ity controllers which map input speed commands into roll,
pitch, yaw and thrust orders. Lastly, the high-level control
layer, which executes over the embedded PC, implements a

reactive control strategy which combine the user desired speed
command with the available sensor data —x, y, z velocities,
height z and distances to the closest obstacles— to obtain
a final and safe speed set-point that is sent to the speed
controllers.

Speed commands are generated through a set of robot be-
haviors organized in a hybrid competitive-cooperative frame-
work [26]. Fig. 2 (right) details the behavior-based archi-
tecture, grouping the different behaviors depending on its
purpose. A total of four general categories have been identified
for the particular case of visual inspection: (a) behaviors
to accomplish the user intention; (b) behaviors to ensure
the platform safety within the environment; (c) behaviors to
increase the autonomy level; and (d) behaviors to check flight
viability. Some of the behaviors in groups (a) and (c) can
operate in the so-called inspection mode. While in this mode,
the vehicle moves at a constant and reduced speed (if it is
not hovering) and keeps the distance to the inspected wall, for
improve the image capture.

IV. DEFECT DETECTION ALGORITHM

The defect detector presented in this paper is based on
a generic framework that can be configured to combine the
information provided by different features selected to fit with
the classification problem at hand [27]. To select the features
for our particular inspection task, we have considered several
aspects discussed in [28]: (1) which features are the best for
a suitable classification, (2) how many features are necessary,
and (3) how should these be combined to implement the best
classifier.

Vessel structures typically consist of large surfaces that
usually present a regular texture. The typical defects of these
structures (such as cracks or corrosion) can be considered as
a discontinuity that alters the regularity of the texture, while
potentially attracts the visual attention of the surveyor during
a visual inspection process. Following this idea, we propose
the use of local contrast (or sudden variation) in intensity,
color and orientation as features to detect defects on vessel
structures.

The model by Itti et al. [29] has been used as source of
inspiration to build our Contrast-based Defect Detector (CDD
from now on). Itti et al. work described for the first time
a contrast-based model for saliency and has inspired later
authors [30].

Fig. 3 details CDD, which consists of the following stages:
• Pre-feature computation. Five pre-feature maps are com-

puted from the red (r), green (g) and blue (b) channels
of the input image:

I =
r + g + b

3
, (1a) R = r − g + b

2
, (1b)

G = g − r + b

2
, (1c) B = b− r − g

2
, (1d)

Y =
r + g

2
− |r − g|

2
− b, (1e)

where I is an intensity map, R is a red channel map, G
is a green channel map, B is a blue channel map and
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Fig. 3. Pipeline of the contrast-based defect detector.

Y is a yellow channel map. During the computation of
these maps, negative values (if any) are set to zero.

• Scale-space generation. Pre-feature maps are scaled using
a range of scale factors to obtain a collection of multiple-
scale representations, also known as pyramids. A total
of nine pyramids are computed. On the one hand, five
Gaussian pyramids Î , R̂, Ĝ, B̂ and Ŷ are computed by
progressively low-pass filtering and sub-sampling the pre-
feature maps (I , R, G, B and Y ). On the other hand, four
Gabor pyramids Ô0, Ô45, Ô90 and Ô135 are computed fil-
tering the images of the intensity pyramid Î with oriented
Gabor filters with orientations θ ∈ {0◦, 45◦, 90◦, 135◦}.
All pyramids comprise seven scales, ranging from 1:1
(scale one) to 1:64 (scale seven).

• Feature computation. Three threads are executed in paral-
lel to build three feature maps, respectively corresponding
to the contrast level in intensity (I), color (C) and orien-
tation (O). This computation is performed as indicated
in [29]. A first step computes center-surround differences
between fine and coarse scales from the pyramids; that
is, it computes the difference between each pixel of a fine
(or center) scale c and its corresponding pixel in a coarse
(or surrounding) scale s. Accordingly, intermediate maps
I(c, s), RG(c, s), BY(c, s) and O(c, s, θ) are created as
follows:

I(c, s) = |I(c)	 I(s)|, (2)

RG(c, s) = |R(c)−G(c))	 (G(s)−R(s))|, (3)

BY(c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))|, (4)

O(c, s, θ) = |O(c, θ)	O(s, θ)|, (5)

where |x| refers to the absolute value of x, 	 is the
across-scale subtraction operator (see Fig. 4), I(c, s)
accounts for the intensity contrast, RG(c, s) accounts for
red/green contrast, BY(c, s) accounts for blue/yellow con-
trast and O(c, s, θ) accounts for the orientation contrast
for a given orientation θ. In our implementation the scales
are defined as c ∈ {1, 2, 3} and s = c+δ, with δ ∈ {3, 4}.
In a second step, the intermediate maps are combined
into the three feature maps by means of the across-scale
addition operator ⊕ (see Fig. 4 for details):

I =
3⊕
c=1

c+4⊕
s=c+3

N(I(c, s)), (6)

C =

3⊕
c=1

c+4⊕
s=c+3

(N(RG(c, s)) +N(BY(c, s))) , (7)

O =
∑

θ∈{0◦,45◦,90◦,135◦}

N

(
3⊕
c=1

c+4⊕
s=c+3

N(O(c, s, θ))

)
,

(8)
where N(.) is a normalization operator devised to pro-
mote high and isolated peaks. It consists in adjusting
the map to a fixed range [0..M] and multiplying it by
(M −m)2, being m the average of all local maxima that
do not coincide with the global maximum.
By way of illustration, a diagram showing the entire
feature computation for map I can be found in Fig. 4.
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Fig. 4. Illustration of feature map computation: case of intensity-contrast map.

• Normalization. The normalization operator N(.) is used
now to promote the highest and isolated peaks in the three
feature maps, obtaining I for intensity, C for color and O
for orientation.

• Combination operator. The final defect map is computed
using the linear combination:

D =
I + C + O

3
, (9)

so that any salient point in any of the feature maps
appears in the final defect map.

The resulting detector presents the following properties: (1)
it computes three different features that are potentially useful
to discriminate between defective and non-defective areas;
(2) it can be used on input images captured from different
distances, since final features response do not depend on
scale (the detector operates at multiple scales); (3) different
feature maps can be successfully combined into a single
defect map, since a normalization operator assures the correct
propagation of the information provided by each; and (4) the
resultant detection output can be remapped into a gray-scale
image proportional to saliency values, allowing for an easy
examination by a human (see Fig. 7).

V. ASSESSMENT OF THE DEFECT DETECTOR

To assess the performance of our defect detection sensor
we have run a number of experiments involving a dataset
comprising 73 images of vessel structures including defec-
tive areas (cracks, coating breakdown and different kinds of
corrosion), as well as images captured by the aerial platform.
The images have been collected at different distances and at
different lighting conditions. The dataset, which also includes
the ground truth consisting in black and white images with
defects labelled in white (see Fig. 7), is available online3.

In a first kind of experiment, we have assessed the suitability
of using contrast to differentiate between defective and non-
defective areas. To this end, the probability distribution func-
tions (PDF) for this feature have been estimated for the two
classes, post-processing the respective histograms (collected
from the dataset) using the Parzen windows method [28]. The
resulting PDFs are shown in Fig. 5. We can state the following
looking at those PDFs:
• Contrast on non-defective areas is bounded into a narrow

region of the feature space (most of the values are
between 0 and 20). This indicates that different vessel

3http://dmi.uib.es/∼xbonnin/resources
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Fig. 5. PDFs obtained for contrast in the defective and non-defective areas
of the image dataset.

hull surfaces tend to present similar values of contrast in
luminance, color and orientation.

• The PDF for contrast on non-defective areas presents its
peak around 10, being this a low value. This confirms
that vessel surfaces present a regular texture (more or
less homogeneous), with smooth changes of luminance,
color and orientation.

• Defective areas tend to present higher values of contrast
(the PDF peak is around 25), so that contrast seems to
be a useful feature to differentiate between defective and
non-defective areas in vessel structures.

In a second kind of experiment, we evaluate the performance
of CDD. Fig. 7 (bottom) presents some examples of defect
maps provided by our defect detector. At first sight, it can be
observed that our defect detector tend to label in lighter gray
the areas that are indicated as defective in the ground truth
image. This suggests that CDD can attain good classification
rates.

In order to perform a quantitative evaluation, the True
Positive Rate (TPR), or sensitivity, and the False Positive Rate
(FPR), or fall-out, have been computed for the defect detector.
To this end, the defect maps were thresholded for different
values of a threshold τ to obtain the blue Receiver Operating
Characteristic (ROC) curve presented in Fig. 6 (left). This
curve shows that CDD presents a good performance during
the classification task: the curve is above the diagonal, what
represents good classification results (better than random), and
relatively close to the (0,1) corner of the ROC space, which
corresponds to perfect classification.

Furthermore, to complete the assessment, the Area Under
the Curve (AUC) [32] value has been calculated for the ROC
curve, obtaining a value above 0.9, what confirms the good
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classification performance.
In a third kind of experiment, the defect detection per-

formance of CDD has been compared with the performance
of the symmetry-based saliency detector by Kootstra and
Schomaker [31]. This method has proved to outperform the Itti
et al. contrast-based saliency model when predicting human-
eye fixations. To do that, the dataset has been analysed using
the symmetry-based model and the corresponding ROC curve
has been obtained. This is shown in orange in Fig.6 (left).
As can be observed, our defect detector clearly outperforms
the symmetry-based saliency model regarding the detection of
defects on vessel structures.

In a fourth kind of experiment, CDD has been compared
with state-of-the-art defect detectors. In a first case, we have
compared with the Weak-classifier Colour-based Corrosion
Detector (WCCD) algorithm [21]. This algorithm was de-
vised for corrosion detection in images taken from vessel
structures. It consists in a cascaded classifier that combines
texture (described as the energy of a gray-level co-ocurrence
matrix downsampled to 32 gray levels) and colour infor-
mation, and has proved to outperform other more complex
weak-classifier combinations, such as the ABCD algorithm
[22], which combines Laws’ texture energy filters within an
AdaBoost framework. Notice that both WCCD and ABCD
follow a supervised classification scheme so they require from
a previous training stage.

The WCCD algoritm has been slightly modified to compute
the energy for all the pixels of the image instead of computing
it at a patch level, in order to obtain finer classification results.

To perform the assessment, the original dataset has been
reduced to the images which contain corrosion. The resultant
dataset, containing 49 images, has been evaluated using both
CDD and WCCD algorithms. The ROC curves have been
computed for the different detectors and are provided as
Fig. 6 (middle). As can be observed, the ROC curve for
WCCD is considerable below the curve for CDD.

In a second comparative assessment, we have used the
defect detector presented in [23]. This algorithm combines
contrast and symmetry information through the Bayesian
framework SUN [33] to provide a saliency value for every
pixel in the image. To be more precise, the saliency at a given

point z is defined as:

Sz =
1

p(F = fz)
p(F = fz|C = 1), (10)

where F represents the visual features associated to a point
(contrast and/or symmetry), fz represents the feature values
observed at z, and C denotes whether a point belongs to the
target class or not (1 = defective area). Using this formulation,
the saliency of a given point z decreases as the probability of
features fz is higher, and increases as the probability of fz
in defects increases. The Parzen windows method was applied
once again to estimate those probabilities, using all the images
of the dataset.

Notice that, despite both approaches introduce contrast
information to describe the defective areas, the defect detector
based on the framework SUN requires from a training stage
to estimate the probability distributions, while CDD does not
require any previous stage.

To perform the assessment, the complete dataset has been
used. Three different configurations of the SUN-based detector
have been considered: using only contrast, using only symme-
try and using both features. These three configuration have
been evaluated through Leave-One-Out-Cross-Validation [34]
and their corresponding ROC curves and AUC values have
been computed. Fig. 6 (right) compares these detectors with
CDD.

As can be observed, the performance attained with CDD
is as good as the performance attained with the SUN-based
detector versions that use contrast information, presenting all
high AUC values. These results are even better taking into
account that CDD does not rely on knowledge learned during a
previous training stage, as the SUN-based versions do. Finally,
the performance of the SUN-based detector that use symmetry
is considerably below the performance attained by CDD.

In a last kind of experiment, we have checked the usability
of FDDS for the vessel inspection and defect detection task.
To perform the experiment, the vehicle was flown under
inspection mode in front of a vertical surface containing
corroded areas, while its vision system was taking pictures at
10 Hz. The collected images were then processed by the image
mosaicing algorithm described in [35], which managed to
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Fig. 7. Test images (A) with their associated ground truth (B) and defect map obtained with CDD (C).

produce the seamless composite shown in Fig. 8 (left). Finally,
the mosaic was analysed using CDD which provided the defect
map shown in Fig. 8 (right). Notice that CDD does not analyse
the mosaic borders since contrast level can not be successfully
computed in these areas. A ground truth image has been
manually generated for the mosaic (see Fig. 8 (middle)) in
order to check the quality of the defect map. As can be
observed, lighter pixels in the defect map, that is, those which
are likelier to correspond to defects according to CDD, are
indeed labelled in white in the ground truth.

VI. CONCLUSIONS

A novel defect detection sensor for vessel structures has
been presented. We have introduced and discussed the hard-
ware and control architecture of the underlying aerial platform,
as well as the computer vision algorithm in charge of providing
the defect detection results.

The use of the SA paradigm for the control architecture
design results in an easy-to-use platform that makes the
inspection process natural to the surveyor. Moreover, a set of
robot behaviors are used to provide the device with different
functionalities to ensure the platforms safety, check the flight
viability and increase the autonomy level. A total of 9 dif-
ferent simple behaviors are combined in a hybrid competitive-

Fig. 8. Visual inspection performance: (left) mosaic built from images col-
lected by the aerial vehicle, (middle) ground truth image manually generated,
(right) defect detection result provided by CDD, where lighter pixels are
likelier to correspond to defects [mosaic borders are not analysed].

cooperative framework to provide a more sophisticated perfor-
mance that aims at covering the different situations that may
arise during a vessel inspection.
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The defect detector running inside the FDDS takes inspira-
tion from the idea of conspicuity and taking into account the
kind of defects that appear in the vessel metallic structures
(mainly cracks and corrosion), as well as the range of oper-
ating conditions in which the images are captured (lighting
and distance). Contrast in intensity, color and orientation have
been the features selected to implement the defect detector.

Experimental results show that CDD is able to identify
the defective situations typically arising in vessel structures,
improving the results obtained from previous detectors.

The usability of the complete FDDS sensor has been also
proved after combining it with a mosaicing algorithm. During
a vessel inspection campaign, the use of mosaics allows us
to extract more information about the state of the inspected
surface since defective areas are not split over multiple images.
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