

1 INTRODUCTION

The different steel surfaces that are part of a vessel’s
hull can be affected by different kinds of defective sit-
uations, such as coating breakdown, corrosion, and,
ultimately, cracks. These defects are indicators of the
state of the metallic surface and, as such, an early de-
tection prevents the structure from buckling or frac-
turing, and the subsequent ultimate consequences this
can give rise to –at many levels, personal, environ-
mental and financial.

To avoid reaching such undesirable situations, in-
spections onboard sea-going vessels are regular activ-
ities being initiated partly due to applicable classifi-
cation and statutory regulations, and partly because of
the obvious interest of ship operators and ship owners
in anticipating the defective situations, given the costs
associated to unexpected disruptions of vessel service
availability.

Unfortunately, continuous monitoring of the struc-
ture at a required level of detail, with proper identifi-
cation of defects and/or assessment of corrosion, is
not trivial and quite expensive (taking into account

the vessel’s preparation, use of yard facilities, clean-
ing, ventilation and provision of access arrange-
ments). In this regard, since visual inspections are and
will be an important source of information for struc-
ture condition assessment, it seems necessary to try to
reduce the effort and cost related to these activities
with the introduction of new technological tools. This
paper describes a set of such tools, developed within
the frameworks of the INCASS and the MINOAS
projects, whose goal as a whole is to provide decision
support at the defect detection level. These tools must
be considered in a broader sense, covering both ro-
botic solutions and software utilities. In brief, the
toolbox comprises: (1) a multi-rotor based aerial plat-
form which is used to collect images from the sur-
faces under inspection, either focusing on providing
access to remote areas or for broader and intensified
visual data acquisition; (2) a control architecture run-
ning onboard the aerial platform, specifically oriented
to simplifying visual inspection operations, but ge-
neric enough to be able to run over any aerial platform
fitted with one of several compatible navigation sen-
sor suites; (3) an image stitching software aiming at

Towards automated ship inspection: A visual data-oriented toolbox

A. Ortiz, F. Bonnin-Pascual, E. Garcia-Fidalgo & J.P. Company-Corcoles
Dep. of Mathematics and Computer Science, University of Balearic Islands, Palma de Mallorca, Spain

 ABSTRACT: The obvious interest on the monitoring and identification of defects affecting the metallic struc-
tures of ships, as well as on reducing the costs of the always expensive onboard inspections, suggests the intro-
duction of technological tools to assist the involved agents (ship owners/operators, surveyors). This paper de-
scribes a toolbox, developed within the frameworks of the INCASS and MINOAS projects, whose goal is to
provide decision support at the defect detection level. These tools must be considered in a broader sense, cov-
ering both robotic solutions and software utilities. In brief, the toolbox comprises: (1) a multi-rotor based aerial
platform which is used to collect images from the surfaces under inspection, either focusing on providing access
to remote areas or for broader and intensified data acquisition; (2) a control architecture running onboard the
aerial platform, specifically oriented to simplifying visual inspections, but generic enough to be able to run over
any aerial platform fitted with one of several compatible sensor suites; (3) an image stitching software aiming
at enhancing the presentation of the visual data collected, as well as improving defect detection since defects
no longer appear broken across consecutive images, but as single units in the image composite; (4) a lightweight
image-saliency detector tuned for detecting generic defects, what can be useful to either guide the image capture
onto relevant areas from the inspection point of view or to guide specific defect detectors; (5) a collection of
crack and corrosion defect detectors spanning a range of image processing and machine learning techniques.

KEYWORDS: aerial vehicle; supervised autonomy; image stitching; defect detection; machine learning

enhancing the presentation of the visual data col-
lected, as well as improving defect detection since de-
fects no longer appear broken across consecutive im-
ages, but as a single unit in the image composite; (4)
a lightweight image-saliency detector tuned for de-
tecting generic defects, what can be useful to either
guide the image capture onto relevant areas from the
inspection point of view or to guide specific defect
detectors; (5) a collection of defect detectors covering
a range of image processing and machine learning
techniques devised for crack and coating break-
down/corrosion detection.

The rest of the paper is organized as follows: Sec-
tion 2 describes the aerial platform, with particular
emphasis on the features it is fitted with thanks to a
control architecture specifically developed for inspec-
tion applications; Section 3 details the sensor data
collection capabilities of the platform; post-pro-
cessing tools, including the image stitching software
and the defect detectors, are addressed in, respec-
tively, Sections 4 and 5; to finish, conclusions are
summarized in Section 6.

2 THE AERIAL PLATFORM

2.1 Platform overview

As previously said, the aerial vehicle is based on a
multi-rotor design. These robotics platforms have be-
come increasingly popular in recent years, and, as a
consequence, a number of control and navigation so-
lutions can be found in the related literature. They dif-
fer mainly in the sensors used to solve these tasks, the
amount of processing that is performed onboard/off-
board, and the assumptions made about the environ-
ment. Apart from other devices, such as infrared and
ultrasound sensors, laser scanners (Bachrach et al.
2011, Dryanovski et al. 2013, Grzonka et al. 2012)
and, lately, vision cameras (Achtelik et al. 2012,
Chowdhary et al. 2013, Engel et al. 2014, Fraundorfer
et al. 2012, Shen et al. 2013, Troiani et al. 2015) have
become the preferred sensor modalities to undertake
these tasks, mostly within Simultaneous Localization
and Mapping (SLAM) frameworks and combined
with Inertial Measuring Units (IMU).

The control software has been configured to be
hosted by any of the research platforms developed by
Ascending Technologies (the quadcopters Humming-
bird and Pelican, and the hexacopter Firefly), alt-
hough it could be adapted to other systems. The
AscTec vehicles are equipped with one IMU, which
comprises a 3-axis gyroscope, a 3-axis accelerometer
and a 3-axis magnetometer, and two ARM7 micro-
controllers. Attitude stabilization control loops linked
to the onboard IMU and thrust control run over the
main ARM7 microcontroller as part of the platform
firmware. The manufacturer leaves almost free an ad-
ditional secondary ARM7 microcontroller which can
execute onboard higher-level control loops.

All platforms are fitted with a navigation sensor
suite that allows them to estimate the vehicle state,
which comprises 3-axis speed (vx, vy, vz), the flying
height z and the distances to the closest obstacles in
different orientations, e.g. left (dl), right (dr) and for-
ward (df). These estimations can be performed by
means of different sensor combinations leading to dif-
ferent weight, volume occupied and power consump-
tion. This permits preparing for the inspection appli-
cation either vehicles of low payload capacity (lower-
cost platform) or vehicles able to lift a heavier sensor
suite (higher-cost platform). By way of example, Fig-
ure 1 shows a Hummingbird platform, fitted with two
lightweight optical-flow sensors for speed estimation,
ultrasound sensors for obstacle detection and an infra-
red height-meter, and a Pelican platform fitted with a
laser scanner for speed estimation and obstacle detec-
tion, and a laser-based height-meter. Additional de-
tails for the latter can be found in Table 1.

Figure 1. [top] A Hummingbird platform featuring optical flow
sensors (green), an infrared height-meter (orange), and ultra-
sound sensors (red). [bottom] A Pelican platform featuring a la-
ser scanner (green) and a laser-based height-meter (red). The
embedded PC is indicated by a yellow arrow in each case.

Besides the navigation sensor suite, all platforms
carry, in accordance to their payload capacity, one or
several cameras for collecting the expected visual in-
spection data.

To finish, apart from the two ARM7 microcontrol-
lers integrated in the flight control unit of the AscTec
platforms, all vehicles carry an embedded PC, which
avoids sending sensor data to a base station, but pro-
cess them onboard and, thus, prevent communica-
tions latency inside critical control loops. Once again,
the different platforms are endowed with boards com-
patible with their payload limits, e.g. the Humming-
bird of Figure 1 features a Commell LP-172 Pico-ITX

board fitted with an Intel Atom 1.86 GHz processor
and 4 GB RAM, while the Pelican carries an Intel
NUC D54250WYB with an Intel Core i5-4250U 1.3
GHz processor and 4 GB RAM.

Table 1. Specifications of one of the aerial robots.

Aerial platform (Pelican)

Size (L x W x H) 650 mm  650 mm  270 mm

Weight 1700 g

Propulsion 4  160 W brushless motors

10” propellers

Power 11.1V, 4500mAh

3-cell Lithium-Polymer

Speed 0.5 – 2 m/sec

Sensors 3-axis IMU

Laser scanner / optical flow sensors

Height meter

2 Mpx still camera

12 Mpx full HD video camera

Communication

& interaction

Dual 2.4 - 5GHz Wi-Fi LAN

Joystick / gamepad

Aux. components Onboard 10W LED spotlight(s)

2.2 Control software

Following the advice received during the MINOAS
field trials, the current aerial platforms integrate a
control architecture that follows the supervised au-
tonomy (SA) paradigm (Cheng & Zelinsky 2001).
This is a human-robot framework where the operator
is always allowed to be within the general platform
control loop though assisted by the robot, which im-
plements a number of autonomous functions, includ-
ing self-preservation and other safety-related issues,
which make simpler the intended operations for the
operator and so permits he/she to focus in accom-
plishing the task at hand. Within this framework, the
communication between the robot and the user is per-
formed via qualitative instructions and explanations:
the user prescribes high-level instructions to the plat-
form while this provides instructive feedback. In our
case, we use simple devices such as a joystick or a
gamepad to introduce the qualitative commands and
a graphical user interface (GUI) to receive the robot
feedback. Joystick commands and the GUI are han-
dled at a base station (BS) linked with the MAV via
a Wi-Fi connection.

The control software is organized around a layered
structure distributed among the available computa-
tional resources. On the one hand, the low-level con-
trol layer implementing attitude stabilization and di-
rect motor control executes over the main
microcontroller as the platform firmware provided by
the manufacturer (Gurdan et al. 2007). On the other
hand, mid-level control, running over the secondary
microcontroller, comprises height and velocity con-
trollers which map input speed commands into roll,
pitch, yaw and thrust orders. Lastly, the high-level

control layer, which executes over the embedded PC,
implements a reactive control strategy coded as a se-
ries of ROS nodes (http://www.ros.org, the Robot
Operating System) running over Linux Ubuntu,
which combine the user desired speed command with
the available sensor data –vx, vy, and vz velocities,
height z and distances to the closest obstacles dl, dr
and df –, to obtain a final and safe speed set-point that
is sent to the speed controllers.

Speed commands are generated through a set of
robot behaviours organized into a hybrid competitive-
cooperative framework (Arkin 1998). That is to say,
on the one hand, higher priority behaviours can over-
write the output of lower priority behaviours by
means of a suppression mechanism taken from the
subsumption architectural model. On the other hand,
the cooperation between behaviours with the same
priority level is performed through a motor schema,
where all the involved behaviours supply each a mo-
tion vector and the final output is their weighted sum-
mation. An additional flow control mechanism se-
lects, according to a specific input, among the outputs
provided by two or more behaviours.

Figure 2. Behaviour-based upper control layer.

Figure 2 details the behaviour-based architecture,
grouping the different behaviours depending on its
purpose. A total of four general categories have been
identified for the particular case of visual inspection:
(a) behaviours to accomplish the user intention,
which propagate the user desired speed command, at-
tenuating it towards zero in the presence of close ob-
stacles, or keeps hovering until the Wi-Fi link is re-
stored after an interruption; (b) behaviours to ensure
the platform safety within the environment, which
prevent the robot from colliding or getting off the safe
area of operation; (c) behaviours to increase the au-
tonomy level, which provide the platform with higher
levels of autonomy to both simplify the operation and
to introduce further assistance during inspections; and
(d) behaviours to check flight viability, which checks
whether the flight can start or progress at a certain
moment in time. Some of the behaviours in groups (a)
and (c) can operate in the so-called inspection mode.
While in this mode, the vehicle moves at a constant

and reduced speed (if it is not hovering) and user com-
mands for longitudinal displacements or turning
around the vertical axis are ignored. In this way, dur-
ing an inspection, the platform keeps at constant dis-
tance/orientation with regard to the front wall, for im-
proved image capture.

3 DATA COLLECTION CAPABILITIES

During flight, any of the aerial platforms can collect
pictures on demand or at a fixed rate, e.g. 10 fps, as
well as log flight data. The latter includes the vehicle
pose, i.e. 3D position and 3D attitude, the vehicle
speeds and the distances to the closest obstacles. Of
particular relevance is the vehicle pose, which per-
mits associating a 3D position to the defects found.
For this purpose, two simultaneous and localization
methods (SLAM) have been integrated onboard the
aerial platforms given their different payload capaci-
ties. One adopts a laser-based SLAM strategy while
the other is a visual single-camera SLAM solution:
while the first one aligns consecutive laser scans to
estimate the vehicle motion from one time instant to
the next, the second solution matches image features
across consecutive images, projects them in 3D space
and determines the corresponding 3D transformation.
Depending on the robot onboard computational capa-
bilities, the latter process can run on-line or off-line,
after flight. By way of example, Figure 3 (top) shows
the paths estimated by the laser-based approach for
two flights, as well as illustrates the defect localiza-
tion process after visual inspection through the pro-
jection, as different coloured rectangles, of the bound-
ing boxes of the defects found during a flight
(bottom). Figure 4 shows the aerial robot during vis-
ual inspections onboard an oil tanker (top) and
onboard a bulk carrier (middle); examples of the im-
ages captured for both cases can be found, respec-
tively, at the bottom left and right.

4 IMAGE MOSAICING

Typically, a large number of images are available af-
ter an inspection operation. Instead of just archiving
them, and perhaps processing them later, this section
describes a tool to improve their presentation and
avoid at the same time the redundancy that naturally
results when the images are taken at a constant rate,
so that it is usually the case that a number of consec-
utive images contain essentially the same infor-
mation. The idea is to determine the overlap between
the different images collected and use them and the
detected overlap to build one single, seamless com-
posite image from the area under inspection.

Figure 3. Paths estimated after a flight [top] and illustration of
the defect localization process after visual inspection [bottom].

Figure 4. Visual inspections onboard an oil tanker [top and bot-
tom left] and onboard a bulk carrier [middle and bottom right].

This process, generically known as image mosaicing,
can provide a number of additional benefits to the in-
spection process: (1) defects, which, depending on the
camera optics, distance and viewpoint, can appear

broken in all images they are contained in, in the mo-
saic they will likelier appear in its full extension, so
that their severity will be better appreciated; (2) since
the different images are transformed to a common
frame, the mosaic compensates for differences in
camera viewpoint and distance among the individual
images; and (3) this common frame makes it possible
to take measurements from the images containing the
defects if needed. Besides, it is not necessary to build
a mosaic from all the images collected (which can
take some time), but from a selected set of images,
e.g. to get an image containing a single, large defect.

In this section, we briefly describe BIMOS (Binary
descriptor-based Image MOSaicing), an image stitch-
ing approach which can produce seamless mosaics on
different scenarios and camera configurations in a
reasonable amount of time thanks to the multi-
threaded architecture. In more detail, after decoupling
the strategic steps involved in the mosaicing process,
and as outlined in Figure 5, BIMOS consists of four
threads that run in parallel and contribute all to the
data structure that finally gives rise to the image com-
posite, called the mosaic graph.

Figure 5. BIMOS architecture: the four threads (in blue) interact
with a shared structure called mosaic graph (in green).

For a start, BIMOS makes use of ORB features (Ru-
blee et al. 2011) to describe images, what accelerates
the image description process thanks to the binary na-
ture of ORB. Besides, instead of using all the input
images to build the mosaic, we adopt a keyframe se-
lection policy, by which only images providing a sig-
nificant contribution to the image composite
(keyframes) are employed, and the rest are discarded,
what in turn avoids unnecessary drift during the im-
age alignment process. This contribution is measured
as the amount of overlap between the current image
and the last keyframe inserted in the mosaic graph.

To find overlapping images (i.e. close a visual
loop), we employ a binary visual dictionary (Garcia-
Fidalgo & Ortiz 2014), which is based on a Bag of

Words (BoW) scheme that is built in an online man-
ner. This avoids a training stage prior to building mo-
saics as well as the dependence on a specific diction-
ary.

The optimizing thread finds the camera motion be-
tween keyframes by optimizing the alignment error.
This motion is modelled through a similarity transfor-
mation H:

𝐻 = (
 cos  − sin  𝑡𝑥

 sin   cos  𝑡𝑦

0 0 1

) , (1)

where  is a scale factor, (tx, ty) is a translation vector
and  is a rotation angle.

Finally, the blending thread produces the final mo-
saic under demand, making use of the camera motion
estimated by the optimizer up to the moment in which
the mosaic generation command is issued. The multi-
band blending algorithm by Burt & Adelson (1983) is
employed to diminish the visual artifacts that result
from the combination of the images contributing to
the mosaic.

To finish with this section, Figure 6 shows two mo-
saics produced by BIMOS.

Figure 6. Mosaics from sequences resulting from an inspection
operation (left) and a flight at high altitude (right).

5 DEFECT DETECTION

Along projects MINOAS and INCASS, we have ad-
dressed automatic defect detection in images from a
number of different technologies, ranging from image
processing to machine learning. Due to lack of space,
in this section we will be able to cover only a selection

of the different defect detectors which we have devel-
oped. In more detail, we will describe first an innova-
tive approach based on image saliency, which results
into an effective and generic detector of defects in
vessel surfaces. In the next section, we will describe
specific detectors for coating breakdown/corrosion
and cracks, which actually could be guided by the sa-
liency-based detector.

5.1 Image saliency-based defect detection

This approach considers defects as rare phenomena
that may appear on a regular surface or structure.
Since they are rare, the probability that an area is af-
fected by a defect should be rather low. As described
below, this low probability can be used as an indicator
of image saliency, and thus to highlight defective ar-
eas in digital images.

5.1.1 Bayesian approach for saliency computation

Similarly to Zhang et al. (2008), we make use of a
Bayesian approach to compute the saliency map 𝛴𝑖𝑗:

𝛴𝑖𝑗 =
1

𝑝(𝐹=𝑓𝑖𝑗)
𝑝(𝐹 = 𝑓𝑖𝑗|𝑇 = 𝛿) , (2)

where 𝑓𝑖𝑗 is the value of the feature F found at an im-
age location (i, j), and T stands for the target class, i.e.
the defect class  in our case. Hence, equation (2)
combines top-down information with bottom-up sali-
ency to find the pointwise mutual information be-
tween the feature and the target. Using this formula-
tion, the saliency at a given image point decreases as
the probability of feature value 𝑓𝑖𝑗 gets higher, and
increases as the probability of feature value 𝑓𝑖𝑗 for the
defect class  increases.

5.1.2 Image contrast-based saliency

As said before, we consider defects as rare phenom-
ena that catch the visual attention of the observer dur-
ing visual inspection. Following this idea, we de-
scribe defects by means of features typically used in
cognitive models to predict human eye fixations. To
this end, we make use of one of the most influential
saliency computational models based on contrast, de-
scribed in Itti et al. (1998). In this model, the contrast
levels in intensity, colour and orientation are com-
puted as centre-surround differences between fine
and coarse scales over image pyramids of up to 7 lev-
els; that is to say, the difference between each pixel
on a fine (or centre) scale c and its corresponding
pixel in a coarse (or surrounding) scale s is calculated
as 𝑀(𝑐, 𝑠) = |𝑀(𝑐)𝑀(𝑠)|, where  is the centre-
surround operator, c  {1, 2, 3} and s = c + , with 
 {3, 4}. Given an RGB colour image, this process is
performed over: ( denotes across-scale addition)

 the intensity channel 𝐼 = (𝑟 + 𝑔 + 𝑏)/3, with
r, g and b as the original red, green and blue chan-
nels, to build the intensity conspicuity map

𝐼𝑀 = c=2
4

s=c+3
c+4 𝑁(𝐼(𝑐, 𝑠));

 the colour channels RG and BY defined as 𝑅𝐺 =
 𝑅 − 𝐺 and 𝐵𝑌 = 𝐵 − 𝑌, with 𝑅 = 𝑟 – (𝑔 +
𝑏)/2 for red, 𝐺 = 𝑔 – (𝑟 + 𝑏)/2 for green, 𝐵 =
 𝑏 – (𝑟 + 𝑔)/2 for blue and 𝑌 = (𝑟 + 𝑔)/2 −
 |𝑟 − 𝑔|/2 – 𝑏 for yellow (negative values are set
to zero for all channels), to build the colour con-
spicuity map

𝐶𝑀 = c=2
4

s=c+3
c+4 𝑁(𝑅𝐺(𝑐, 𝑠)) + 𝑁(𝐵𝑌(𝑐, 𝑠));

 the orientation channels O(), calculated by con-
volution between channel 𝐼 and Gabor filters at
orientations 0º, 45º, 90º and 135º, to build the ori-
entation conspicuity map

 𝑂𝑀 = ∑ 𝑁 (c=2

4
s=c+3

c+4
 𝑁(𝑂(𝑐, 𝑠,)))  {0º, 45º, 90º,135º} .

The map normalization operator 𝑁(∗) highlights sa-
liency peaks in maps where a small number of strong
peaks of activity (conspicuous locations) are present,
while globally suppressing peaks when numerous
comparable peak responses are present. To this end:
(1) the map is normalized to a fixed range, (2) the
global maximum M is found, (3) the local maxima av-
erage m is determined, and (4) the map is multiplied
by (𝑀 − 𝑚)2.

Finally, the three conspicuity maps are normalized
and summed into the final contrast-based defect map:

𝑐𝑜𝑛𝑖𝑗 =
1

3
(𝑁(𝐼𝑀𝑖𝑗) + 𝑁(𝐶𝑀𝑖𝑗) + 𝑁(𝑂𝑀𝑖𝑗)) (3)

5.1.3 Illustrative results

Figure 7 shows defects maps for a number of images
containing defects. These results have been obtained
using probability density functions (PDFs) for con-
trast, i.e. 𝑝(𝐹 = 𝑐𝑜𝑛𝑖𝑗), and contrast conditioned on
the presence of defects, i.e. 𝑝(𝐹 = 𝑐𝑜𝑛𝑖𝑗|𝑇 = ),
both estimated by means of the Parzen windows
method (Theodoridis & Koutroumbas 2008), and an
image set comprising cracks, coating breakdown and
corrosion.

5.2 Specific defect detection

5.2.1 Coating breakdown/Corrosion detection

The coating breakdown/corrosion (CBC) detector
described in this section is based on a supervised
classification scheme that comprises two steps which
can be considered as two weak classifiers, reason why
it is named WCCD (Weak-classifier Colour-based
Corrosion Detector). The idea is to chain different
poor-performance fast classifiers to obtain a global
classifier attaining a higher global performance
(Duda et al. 2000).

Figure 7. Saliency-based defect maps for real images containing
defects. (Whiter means more salient.).

The first stage of this classifier is based on the
premise that a corroded area exhibits a rough texture,
where roughness is measured as the energy of the
symmetric gray-level co-occurrence matrix (GLCM),
calculated for down-sampled intensity values
between 0 and 31 (Theodoridis & Koutroumbas
2008). The energy of an image patch is then obtained
by means of

𝐸 = ∑ ∑ 𝑝(𝑖, 𝑗)2 31
𝑗=0

31
𝑖=0 , (4)

where p(i, j) is the probability of the co-occurrence of
gray levels i and j. Low-energy patches, i.e. exhibit a
rough texture, are candidates to be more deeply
inspected.

The second classifier operates over the pixels of the
patches that have survived during the roughness step.
This classifier makes use of the colour information
that can be observed from the corroded areas, unlike
the first classifier. It works over the Hue-Saturation-
Value (HSV) colour space after the realization that
HSV values that can be found in corroded areas are
confined to a bounded subspace of the HS plane. This
second step requires a prior training step to learn the
colour of the corroded areas, by building a bi-
dimensional histogram of HS values for image pixels
labelled as corroded.

5.2.2 Corrosion-guided crack detection

After the observation that most cracks in metallic
surfaces coincide, at least partly, with corroded areas,
in this section we describe a crack detector guided by
the output of WCCD. This crack detector, named
GPCD (Guided Percolation-based Crack Detector),
proceeds in accordance to a percolation model,
similarly to the detector described in Yamaguchi &
Hashimoto (2010). It actually consists in a region-
growing scheme that starts from a seed pixel and
propagates in accordance to a set of rules that take
into account the geometry of the crack. In this case,
the rules are defined to identify dark, narrow, and
elongated sets of connected pixels.

Seed pixels are defined over a regular grid with a
step of  pixels, and are required to coincide with an
edge not belonging to an already detected crack and
whose gray level is dark enough. To ensure that the
relevant edges are always considered, a dilation step
follows the edge detection, where the dilation thick-
ness is in accordance to . Furthermore, since, as
mentioned above, the crack detector operates under
the guidance of the corrosion detector, seed pixels are
required to have been labelled as corrosion by
WCCD. The propagation proceeds over the dark
neighbouring pixels until reaching an N  N bound-
ary. Then, the elongation of the percolated area is
checked to be large enough. If that is the case, the per-
colation process continues until reaching an M  M
(M > N) boundary. The final percolated area is classi-
fied as a crack if: (1) its average gray level is dark
enough and (2) its elongation is large enough. Other-
wise, the region is discarded, and another percolation
starts at a different seed pixel.

5.2.3 Illustrative results

Figure 8 shows some examples of corrosion detec-
tion. The output is colour-coded in accordance to how
frequent is the colour of the underlying pixel in the
CBC class: the more reddish, the more frequent.

Next, Figure 9 shows some results of crack detec-
tion followed and guided by corrosion detection.

6 CONCLUSIONS

This paper has described a collection of tools, devel-
oped within the frameworks of the INCASS and the
MINOAS projects, whose goal is to provide decision
support at the defect detection level during inspection
operations. This toolbox comprises an aerial platform
for inspection data collection, together with the un-
derlying control architecture, specifically developed
for visual inspection operations, and a number of soft-
ware tools aiming at improving the presentation of in-
spection data (through image stitching) and the auto-
matic detection of defects.

Figure 8. Examples of CBC detection: [rows 1 & 3] original im-
ages, [rows 2 & 4] processed images (see text for the colour
code).

Figure 9. Examples of corrosion-guided crack detection: [top]
original images, [bottom] processed images (cracks indicated in
light blue).

ACKNOWLEDGEMENTS

This work has been partially supported by EU-FP7

project INCASS (MOVE/FP7/605200/INCASS), by

project number AAEE50/2015 (Govern de les Illes

Balears, Direccio General d’Innovacio i Recerca), by

FEDER funding and by scholarship BES-2015-

071804 (MINECO DPI2014-57746-C3-2-R). This

publication reflects only the authors’ views and the

European Union is not liable for any use that may be

made of the information contained therein.

REFERENCES

Achtelik, M., Lynen, S., Weiss, S., Kneip, L., Chli, M. & Sieg-
wart, R. 2012. Visual-inertial SLAM for a small helicopter
in large outdoor environments, in Proc. IEEE/RSJ Intl. Conf.
on Intelligent Robots and Systems, pp. 2651–2652.

Arkin, R. 1998. Behavior-based Robotics. MIT press.
Bachrach, A., Prentice, S., He, R. & Roy, N. 2011. RANGE-

Robust Autonomous Navigation in GPS-denied Enviro-
ments, Journal of Field Robotics., vol. 28, no. 5, pp. 644–
666.

Burt, P. & Adelson, E. 1983. A Multiresolution Spline with Ap-
plication to Image Mosaics, ACM Transactions on Graphics,
vol. 2, no. 4, pp. 217–236.

Cheng, G. & Zelinsky, A. 2001. Supervised Autonomy: A
Framework for Human-Robot Systems Development, Au-
tonomous Robots, vol. 10, pp. 251–266.

Chowdhary, G., Johnson, E., Magree, D., Wu, A. & Shein, A.
2013. GPS denied Indoor and Outdoor Monocular Vision
Aided Navigation and Control of Unmanned Aircraft, Jour-
nal of Field Robotics, vol. 30, no. 3, pp. 415–438.

Dryanovski, I., Valenti, R. & Xiao, J. 2013. An Open-source
Navigation System for Micro Aerial Vehicles, Autonomous
Robots, vol. 34, no. 3, pp. 177–188.

Duda, R., Hart, P. & Stork, D. 2000. Pattern Classification.
Wiley Interscience.

Engel, J., Sturm, J. & Cremers, D. 2014. Scale-aware navigation
of a low-cost quadrocopter with a monocular camera, Robot-
ics and Autonomous Systems, vol. 62, no. 11, pp. 1646–
1656.

Fraundorfer, F., Heng, L., Honegger, D., Lee, G., Meier, L., Tan-
skanen, P. & Pollefeys, M. 2012. Vision-based Autonomous
Mapping and Exploration Using a Quadrotor MAV, in Proc.
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, pp.
4557–4564.

Garcia-Fidalgo, E. & Ortiz, A. 2014. On the Use of Binary Fea-
ture Descriptors for Loop Closure Detection, in Proc. IEEE
Intl. Conf. on Emerging Technologies and Factory Automa-
tion, pp. 1–8.

Grzonka, S., Grisetti, G. & Burgard, W. 2012. A Fully Autono-
mous Indoor Quadrotor, IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 90–100.

Gurdan, D., Stumpf, J., Achtelik, M., Doth, K., Hirzinger, G. &
Rus, D. 2007. Energy-efficient Autonomous Four-rotor Fly-
ing Robot Controlled at 1 kHz, in Proc. IEEE Intl. Conf. on
Robotics and Automation, pp. 361–366.

Itti, L., Koch, C. & Niebur, E. 1998. A Model of Saliency-based
Visual Attention for Rapid Scene Analysis, in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.
20, no. 11, pp. 1254-1259.

Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. 2011. ORB:
An Efficient Alternative to SIFT or SURF, in Proc. IEEE
Intl. Conf. on Computer Vision, pp. 2564–2571.

Shen, S., Mulgaonkar, Y., Michael, N. & Kumar, V. 2013. Vi-
sion-based state estimation for autonomous rotorcraft MAVs
in complex environments, in Proc. IEEE Intl. Conf. on Ro-
botics and Automation, pp. 1758–1764.

Theodoridis, S. & Koutroumbas, K. 2008. Pattern Recognition.
Academic Press.

Troiani, C., Martinelli, A., Laugier, C. & Scaramuzza, D. 2015.
Low computational-complexity algorithms for vision-aided
inertial navigation of micro aerial vehicles, Robotics and Au-
tonomous Systems, vol. 69, pp. 80–97.

Yamaguchi, T. & Hashimoto, S. 2010. Fast crack detection
method for large-size concrete surface images using perco-
lation-based image processing, Machine Vision and Appli-
cations, vol. 21, no. 5, pp. 797-809.

Zhang, L., Tong, M., Marks, T., Shan, H. & Cottrell, G. 2008.
SUN: A Bayesian Framework for Saliency Using Natural
Statistics, Journal of Vision, vol. 8, no. 7, pp. 1–20.

