
 

 

1 INTRODUCTION 

The different steel surfaces that are part of a vessel’s 
hull can be affected by different kinds of defective sit-
uations, such as coating breakdown, corrosion, and, 
ultimately, cracks. These defects are indicators of the 
state of the metallic surface and, as such, an early de-
tection prevents the structure from buckling or frac-
turing, and the subsequent ultimate consequences this 
can give rise to –at many levels, personal, environ-
mental and financial. 

To avoid reaching such undesirable situations, in-
spections onboard sea-going vessels are regular activ-
ities being initiated partly due to applicable classifi-
cation and statutory regulations, and partly because of 
the obvious interest of ship operators and ship owners 
in anticipating the defective situations, given the costs 
associated to unexpected disruptions of vessel service 
availability. 

Unfortunately, continuous monitoring of the struc-
ture at a required level of detail, with proper identifi-
cation of defects and/or assessment of corrosion, is 
not trivial and quite expensive (taking into account 

the vessel’s preparation, use of yard facilities, clean-
ing, ventilation and provision of access arrange-
ments). In this regard, since visual inspections are and 
will be an important source of information for struc-
ture condition assessment, it seems necessary to try to 
reduce the effort and cost related to these activities 
with the introduction of new technological tools. This 
paper describes a set of such tools, developed within 
the frameworks of the INCASS and the MINOAS 
projects, whose goal as a whole is to provide decision 
support at the defect detection level. These tools must 
be considered in a broader sense, covering both ro-
botic solutions and software utilities. In brief, the 
toolbox comprises: (1) a multi-rotor based aerial plat-
form which is used to collect images from the sur-
faces under inspection, either focusing on providing 
access to remote areas or for broader and intensified 
visual data acquisition; (2) a control architecture run-
ning onboard the aerial platform, specifically oriented 
to simplifying visual inspection operations, but ge-
neric enough to be able to run over any aerial platform 
fitted with one of several compatible navigation sen-
sor suites; (3) an image stitching software aiming at 
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enhancing the presentation of the visual data col-
lected, as well as improving defect detection since de-
fects no longer appear broken across consecutive im-
ages, but as a single unit in the image composite; (4) 
a lightweight image-saliency detector tuned for de-
tecting generic defects, what  can be useful to either 
guide the image capture onto relevant areas from the 
inspection point of view or to guide specific defect 
detectors; (5) a collection of defect detectors covering 
a range of image processing and machine learning 
techniques devised for crack and coating break-
down/corrosion detection. 

The rest of the paper is organized as follows: Sec-
tion 2 describes the aerial platform, with particular 
emphasis on the features it is fitted with thanks to a 
control architecture specifically developed for inspec-
tion applications; Section 3 details the sensor data 
collection capabilities of the platform; post-pro-
cessing tools, including the image stitching software 
and the defect detectors, are addressed in, respec-
tively, Sections 4 and 5; to finish, conclusions are 
summarized in Section 6. 

2 THE AERIAL PLATFORM 

2.1 Platform overview 

As previously said, the aerial vehicle is based on a 
multi-rotor design. These robotics platforms have be-
come increasingly popular in recent years, and, as a 
consequence, a number of control and navigation so-
lutions can be found in the related literature. They dif-
fer mainly in the sensors used to solve these tasks, the 
amount of processing that is performed onboard/off-
board, and the assumptions made about the environ-
ment. Apart from other devices, such as infrared and 
ultrasound sensors, laser scanners (Bachrach et al. 
2011, Dryanovski et al. 2013, Grzonka et al. 2012) 
and, lately, vision cameras (Achtelik et al. 2012, 
Chowdhary et al. 2013, Engel et al. 2014, Fraundorfer 
et al. 2012, Shen et al. 2013, Troiani et al. 2015) have 
become the preferred sensor modalities to undertake 
these tasks, mostly within Simultaneous Localization 
and Mapping (SLAM) frameworks and combined 
with Inertial Measuring Units (IMU). 

The control software has been configured to be 
hosted by any of the research platforms developed by 
Ascending Technologies (the quadcopters Humming-
bird and Pelican, and the hexacopter Firefly), alt-
hough it could be adapted to other systems. The 
AscTec vehicles are equipped with one IMU, which 
comprises a 3-axis gyroscope, a 3-axis accelerometer 
and a 3-axis magnetometer, and two ARM7 micro-
controllers. Attitude stabilization control loops linked 
to the onboard IMU and thrust control run over the 
main ARM7 microcontroller as part of the platform 
firmware. The manufacturer leaves almost free an ad-
ditional secondary ARM7 microcontroller which can 
execute onboard higher-level control loops. 

All platforms are fitted with a navigation sensor 
suite that allows them to estimate the vehicle state, 
which comprises 3-axis speed (vx, vy, vz), the flying 
height z and the distances to the closest obstacles in 
different orientations, e.g. left (dl), right (dr) and for-
ward (df). These estimations can be performed by 
means of different sensor combinations leading to dif-
ferent weight, volume occupied and power consump-
tion. This permits preparing for the inspection appli-
cation either vehicles of low payload capacity (lower-
cost platform) or vehicles able to lift a heavier sensor 
suite (higher-cost platform). By way of example, Fig-
ure 1 shows a Hummingbird platform, fitted with two 
lightweight optical-flow sensors for speed estimation, 
ultrasound sensors for obstacle detection and an infra-
red height-meter, and a Pelican platform fitted with a 
laser scanner for speed estimation and obstacle detec-
tion, and a laser-based height-meter. Additional de-
tails for the latter can be found in Table 1. 
 

 

 

 

 
Figure 1. [top] A Hummingbird platform featuring optical flow 
sensors (green), an infrared height-meter (orange), and ultra-
sound sensors (red). [bottom] A Pelican platform featuring a la-
ser scanner (green) and a laser-based height-meter (red). The 
embedded PC is indicated by a yellow arrow in each case. 

 
Besides the navigation sensor suite, all platforms 
carry, in accordance to their payload capacity, one or 
several cameras for collecting the expected visual in-
spection data. 

To finish, apart from the two ARM7 microcontrol-
lers integrated in the flight control unit of the AscTec 
platforms, all vehicles carry an embedded PC, which 
avoids sending sensor data to a base station, but pro-
cess them onboard and, thus, prevent communica-
tions latency inside critical control loops. Once again, 
the different platforms are endowed with boards com-
patible with their payload limits, e.g. the Humming-
bird of Figure 1 features a Commell LP-172 Pico-ITX 



 

 

board fitted with an Intel Atom 1.86 GHz processor 
and 4 GB RAM, while the Pelican carries an Intel 
NUC D54250WYB with an Intel Core i5-4250U 1.3 
GHz processor and 4 GB RAM. 

 
Table 1. Specifications of one of the aerial robots. 

Aerial platform (Pelican) 

Size (L x W x H) 650 mm  650 mm  270 mm  

Weight 1700 g 

Propulsion 4  160 W brushless motors 

10” propellers 

Power 11.1V, 4500mAh 

3-cell Lithium-Polymer  

Speed 0.5 – 2 m/sec 

Sensors 3-axis IMU 

Laser scanner / optical flow sensors 

Height meter 

2 Mpx still camera 

12 Mpx full HD video camera 

Communication 

& interaction 

Dual 2.4 - 5GHz Wi-Fi LAN 

Joystick / gamepad 

Aux. components Onboard 10W LED spotlight(s) 

2.2 Control software 

Following the advice received during the MINOAS 
field trials, the current aerial platforms integrate a 
control architecture that follows the supervised au-
tonomy (SA) paradigm (Cheng & Zelinsky 2001). 
This is a human-robot framework where the operator 
is always allowed to be within the general platform 
control loop though assisted by the robot, which im-
plements a number of autonomous functions, includ-
ing self-preservation and other safety-related issues, 
which make simpler the intended operations for the 
operator and so permits he/she to focus in accom-
plishing the task at hand. Within this framework, the 
communication between the robot and the user is per-
formed via qualitative instructions and explanations: 
the user prescribes high-level instructions to the plat-
form while this provides instructive feedback. In our 
case, we use simple devices such as a joystick or a 
gamepad to introduce the qualitative commands and 
a graphical user interface (GUI) to receive the robot 
feedback. Joystick commands and the GUI are han-
dled at a base station (BS) linked with the MAV via 
a Wi-Fi connection. 

The control software is organized around a layered 
structure distributed among the available computa-
tional resources. On the one hand, the low-level con-
trol layer implementing attitude stabilization and di-
rect motor control executes over the main 
microcontroller as the platform firmware provided by 
the manufacturer (Gurdan et al. 2007). On the other 
hand, mid-level control, running over the secondary 
microcontroller, comprises height and velocity con-
trollers which map input speed commands into roll, 
pitch, yaw and thrust orders. Lastly, the high-level 

control layer, which executes over the embedded PC, 
implements a reactive control strategy coded as a se-
ries of ROS nodes (http://www.ros.org, the Robot 
Operating System) running over Linux Ubuntu, 
which combine the user desired speed command with 
the available sensor data –vx, vy, and vz velocities, 
height z and distances to the closest obstacles dl, dr 
and df –, to obtain a final and safe speed set-point that 
is sent to the speed controllers. 

Speed commands are generated through a set of 
robot behaviours organized into a hybrid competitive-
cooperative framework (Arkin 1998). That is to say, 
on the one hand, higher priority behaviours can over-
write the output of lower priority behaviours by 
means of a suppression mechanism taken from the 
subsumption architectural model. On the other hand, 
the cooperation between behaviours with the same 
priority level is performed through a motor schema, 
where all the involved behaviours supply each a mo-
tion vector and the final output is their weighted sum-
mation. An additional flow control mechanism se-
lects, according to a specific input, among the outputs 
provided by two or more behaviours.  
 

 
 

Figure 2. Behaviour-based upper control layer. 

 
Figure 2 details the behaviour-based architecture, 
grouping the different behaviours depending on its 
purpose. A total of four general categories have been 
identified for the particular case of visual inspection: 
(a) behaviours to accomplish the user intention, 
which propagate the user desired speed command, at-
tenuating it towards zero in the presence of close ob-
stacles, or keeps hovering until the Wi-Fi link is re-
stored after an interruption; (b) behaviours to ensure 
the platform safety within the environment, which 
prevent the robot from colliding or getting off the safe 
area of operation; (c) behaviours to increase the au-
tonomy level, which provide the platform with higher 
levels of autonomy to both simplify the operation and 
to introduce further assistance during inspections; and 
(d) behaviours to check flight viability, which checks 
whether the flight can start or progress at a certain 
moment in time. Some of the behaviours in groups (a) 
and (c) can operate in the so-called inspection mode. 
While in this mode, the vehicle moves at a constant 



 

 

and reduced speed (if it is not hovering) and user com-
mands for longitudinal displacements or turning 
around the vertical axis are ignored. In this way, dur-
ing an inspection, the platform keeps at constant dis-
tance/orientation with regard to the front wall, for im-
proved image capture. 

3 DATA COLLECTION CAPABILITIES 

During flight, any of the aerial platforms can collect 
pictures on demand or at a fixed rate, e.g. 10 fps, as 
well as log flight data. The latter includes the vehicle 
pose, i.e. 3D position and 3D attitude, the vehicle 
speeds and the distances to the closest obstacles. Of 
particular relevance is the vehicle pose, which per-
mits associating a 3D position to the defects found. 
For this purpose, two simultaneous and localization 
methods (SLAM) have been integrated onboard the 
aerial platforms given their different payload capaci-
ties. One adopts a laser-based SLAM strategy while 
the other is a visual single-camera SLAM solution: 
while the first one aligns consecutive laser scans to 
estimate the vehicle motion from one time instant to 
the next, the second solution matches image features 
across consecutive images, projects them in 3D space 
and determines the corresponding 3D transformation. 
Depending on the robot onboard computational capa-
bilities, the latter process can run on-line or off-line, 
after flight. By way of example, Figure 3 (top) shows 
the paths estimated by the laser-based approach for 
two flights, as well as illustrates the defect localiza-
tion process after visual inspection through the pro-
jection, as different coloured rectangles, of the bound-
ing boxes of the defects found during a flight 
(bottom). Figure 4 shows the aerial robot during vis-
ual inspections onboard an oil tanker (top) and 
onboard a bulk carrier (middle); examples of the im-
ages captured for both cases can be found, respec-
tively, at the bottom left and right. 

4 IMAGE MOSAICING 

Typically, a large number of images are available af-
ter an inspection operation. Instead of just archiving 
them, and perhaps processing them later, this section 
describes a tool to improve their presentation and 
avoid at the same time the redundancy that naturally 
results when the images are taken at a constant rate, 
so that it is usually the case that a number of consec-
utive images contain essentially the same infor-
mation. The idea is to determine the overlap between 
the different images collected and use them and the 
detected overlap to build one single, seamless com-
posite image from the area under inspection. 
 

  

  

 
Figure 3. Paths estimated after a flight [top] and illustration of 
the defect localization process after visual inspection [bottom]. 
 

 

 

  
 
Figure 4. Visual inspections onboard an oil tanker [top and bot-
tom left] and onboard a bulk carrier [middle and bottom right]. 
 
This process, generically known as image mosaicing, 
can provide a number of additional benefits to the in-
spection process: (1) defects, which, depending on the 
camera optics, distance and viewpoint, can appear 



 

 

broken in all images they are contained in, in the mo-
saic they will likelier appear in its full extension, so 
that their severity will be better appreciated; (2) since 
the different images are transformed to a common 
frame, the mosaic compensates for differences in 
camera viewpoint and distance among the individual 
images; and (3) this common frame makes it possible 
to take measurements from the images containing the 
defects if needed. Besides, it is not necessary to build 
a mosaic from all the images collected (which can 
take some time), but from a selected set of images, 
e.g. to get an image containing a single, large defect. 

In this section, we briefly describe BIMOS (Binary 
descriptor-based Image MOSaicing), an image stitch-
ing approach which can produce seamless mosaics on 
different scenarios and camera configurations in a 
reasonable amount of time thanks to the multi-
threaded architecture. In more detail, after decoupling 
the strategic steps involved in the mosaicing process, 
and as outlined in Figure 5, BIMOS consists of four 
threads that run in parallel and contribute all to the 
data structure that finally gives rise to the image com-
posite, called the mosaic graph.  
 

 

 
Figure 5. BIMOS architecture: the four threads (in blue) interact 
with a shared structure called mosaic graph (in green). 
 
For a start, BIMOS makes use of ORB features (Ru-
blee et al. 2011) to describe images, what accelerates 
the image description process thanks to the binary na-
ture of ORB. Besides, instead of using all the input 
images to build the mosaic, we adopt a keyframe se-
lection policy, by which only images providing a sig-
nificant contribution to the image composite 
(keyframes) are employed, and the rest are discarded, 
what in turn avoids unnecessary drift during the im-
age alignment process. This contribution is measured 
as the amount of overlap between the current image 
and the last keyframe inserted in the mosaic graph. 

To find overlapping images (i.e. close a visual 
loop), we employ a binary visual dictionary (Garcia-
Fidalgo & Ortiz 2014), which is based on a Bag of 

Words (BoW) scheme that is built in an online man-
ner. This avoids a training stage prior to building mo-
saics as well as the dependence on a specific diction-
ary. 

The optimizing thread finds the camera motion be-
tween keyframes by optimizing the alignment error. 
This motion is modelled through a similarity transfor-
mation H: 
 

𝐻 =  (
 cos  − sin  𝑡𝑥

 sin   cos  𝑡𝑦

0 0 1

) , (1) 

 

where  is a scale factor, (tx, ty) is a translation vector 
and  is a rotation angle. 

Finally, the blending thread produces the final mo-
saic under demand, making use of the camera motion 
estimated by the optimizer up to the moment in which 
the mosaic generation command is issued. The multi-
band blending algorithm by Burt & Adelson (1983) is 
employed to diminish the visual artifacts that result 
from the combination of the images contributing to 
the mosaic. 

To finish with this section, Figure 6 shows two mo-
saics produced by BIMOS. 
 

  
 

Figure 6. Mosaics from sequences resulting from an inspection 
operation (left) and a flight at high altitude (right). 

5 DEFECT DETECTION 

Along projects MINOAS and INCASS, we have ad-
dressed automatic defect detection in images from a 
number of different technologies, ranging from image 
processing to machine learning.  Due to lack of space, 
in this section we will be able to cover only a selection 



 

 

of the different defect detectors which we have devel-
oped. In more detail, we will describe first an innova-
tive approach based on image saliency, which results 
into an effective and generic detector of defects in 
vessel surfaces. In the next section, we will describe 
specific detectors for coating breakdown/corrosion 
and cracks, which actually could be guided by the sa-
liency-based detector. 

5.1 Image saliency-based defect detection 

This approach considers defects as rare phenomena 
that may appear on a regular surface or structure. 
Since they are rare, the probability that an area is af-
fected by a defect should be rather low. As described 
below, this low probability can be used as an indicator 
of image saliency, and thus to highlight defective ar-
eas in digital images.  

5.1.1 Bayesian approach for saliency computation 

Similarly to Zhang et al. (2008), we make use of a 
Bayesian approach to compute the saliency map 𝛴𝑖𝑗: 
 

𝛴𝑖𝑗 =  
1

𝑝(𝐹=𝑓𝑖𝑗)
𝑝(𝐹 = 𝑓𝑖𝑗|𝑇 = 𝛿) , (2) 

 

where 𝑓𝑖𝑗 is the value of the feature F found at an im-
age location (i, j), and T stands for the target class, i.e. 
the defect class  in our case. Hence, equation (2) 
combines top-down information with bottom-up sali-
ency to find the pointwise mutual information be-
tween the feature and the target. Using this formula-
tion, the saliency at a given image point decreases as 
the probability of feature value 𝑓𝑖𝑗 gets higher, and 
increases as the probability of feature value 𝑓𝑖𝑗 for the 
defect class  increases. 

5.1.2 Image contrast-based saliency 

As said before, we consider defects as rare phenom-
ena that catch the visual attention of the observer dur-
ing visual inspection. Following this idea, we de-
scribe defects by means of features typically used in 
cognitive models to predict human eye fixations. To 
this end, we make use of one of the most influential 
saliency computational models based on contrast, de-
scribed in Itti et al. (1998). In this model, the contrast 
levels in intensity, colour and orientation are com-
puted as centre-surround differences between fine 
and coarse scales over image pyramids of up to 7 lev-
els; that is to say, the difference between each pixel 
on a fine (or centre) scale c and its corresponding 
pixel in a coarse (or surrounding) scale s is calculated 
as 𝑀(𝑐, 𝑠) =  |𝑀(𝑐)𝑀(𝑠)|, where  is the centre-
surround operator, c  {1, 2, 3} and s = c + , with  
 {3, 4}. Given an RGB colour image, this process is 
performed over: ( denotes across-scale addition) 

 

 the intensity channel 𝐼 =  (𝑟 +  𝑔 +  𝑏)/3, with 
r, g and b as the original red, green and blue chan-
nels, to build the intensity conspicuity map  

𝐼𝑀 =  c=2
4

s=c+3
c+4  𝑁(𝐼(𝑐, 𝑠)); 

 

 the colour channels RG and BY defined as 𝑅𝐺 =
 𝑅 − 𝐺 and 𝐵𝑌 =  𝐵 − 𝑌, with 𝑅 =  𝑟 – (𝑔 +
𝑏)/2 for red, 𝐺 =  𝑔 – (𝑟 + 𝑏)/2 for green, 𝐵 =
 𝑏 – (𝑟 + 𝑔)/2 for blue and 𝑌 =  (𝑟 + 𝑔)/2 −
 |𝑟 − 𝑔|/2 –  𝑏 for yellow (negative values are set 
to zero for all channels), to build the colour con-
spicuity map  

𝐶𝑀 = c=2
4

s=c+3
c+4  𝑁(𝑅𝐺(𝑐, 𝑠)) + 𝑁(𝐵𝑌(𝑐, 𝑠)); 

 

 the orientation channels O(), calculated by con-
volution between channel 𝐼 and Gabor filters at 
orientations 0º, 45º, 90º and 135º, to build the ori-
entation conspicuity map 

 𝑂𝑀 = ∑ 𝑁 ( c=2

4
s=c+3

c+4
 𝑁(𝑂(𝑐, 𝑠,)))  {0º, 45º, 90º,135º} . 

The map normalization operator 𝑁(∗) highlights sa-
liency peaks in maps where a small number of strong 
peaks of activity (conspicuous locations) are present, 
while globally suppressing peaks when numerous 
comparable peak responses are present. To this end: 
(1) the map is normalized to a fixed range, (2) the 
global maximum M is found, (3) the local maxima av-
erage m is determined, and (4) the map is multiplied 
by (𝑀 − 𝑚)2.  

Finally, the three conspicuity maps are normalized 
and summed into the final contrast-based defect map: 
 

𝑐𝑜𝑛𝑖𝑗 =  
1

3
(𝑁(𝐼𝑀𝑖𝑗) +  𝑁(𝐶𝑀𝑖𝑗) +  𝑁(𝑂𝑀𝑖𝑗)) (3) 

5.1.3 Illustrative results 

Figure 7 shows defects maps for a number of images 
containing defects. These results have been obtained 
using probability density functions (PDFs) for con-
trast, i.e. 𝑝(𝐹 = 𝑐𝑜𝑛𝑖𝑗), and contrast conditioned on 
the presence of defects, i.e. 𝑝(𝐹 = 𝑐𝑜𝑛𝑖𝑗|𝑇 = ), 
both estimated by means of the Parzen windows 
method (Theodoridis & Koutroumbas 2008), and an 
image set comprising cracks, coating breakdown and 
corrosion.  

5.2 Specific defect detection 

5.2.1 Coating breakdown/Corrosion detection 

The coating breakdown/corrosion (CBC) detector 
described in this section is based on a supervised 
classification scheme that comprises two steps which 
can be considered as two weak classifiers, reason why 
it is named WCCD (Weak-classifier Colour-based 
Corrosion Detector). The idea is to chain different 
poor-performance fast classifiers to obtain a global 
classifier attaining a higher global performance 
(Duda et al. 2000).  



 

 

 

  

  

  

  
 
Figure 7. Saliency-based defect maps for real images containing 
defects. (Whiter means more salient.). 
 

The first stage of this classifier is based on the 
premise that a corroded area exhibits a rough texture, 
where roughness is measured as the energy of the 
symmetric gray-level co-occurrence matrix (GLCM), 
calculated for down-sampled intensity values 
between 0 and 31 (Theodoridis & Koutroumbas 
2008). The energy of an image patch is then obtained 
by means of 
 

𝐸 =  ∑ ∑ 𝑝(𝑖, 𝑗)2 31
𝑗=0

31
𝑖=0 , (4) 

 
where p(i, j) is the probability of the co-occurrence of 
gray levels i and j. Low-energy patches, i.e. exhibit a 
rough texture, are candidates to be more deeply 
inspected. 

The second classifier operates over the pixels of the 
patches that have survived during the roughness step. 
This classifier makes use of the colour information 
that can be observed from the corroded areas, unlike 
the first classifier. It works over the Hue-Saturation-
Value (HSV) colour space after the realization that 
HSV values that can be found in corroded areas are 
confined to a bounded subspace of the HS plane. This 
second step requires a prior training step to learn the 
colour of the corroded areas, by building a bi-
dimensional histogram of HS values for image pixels 
labelled as corroded. 

5.2.2 Corrosion-guided crack detection 

After the observation that most cracks in metallic 
surfaces coincide, at least partly, with corroded areas, 
in this section we describe a crack detector guided by 
the output of WCCD. This crack detector, named 
GPCD (Guided Percolation-based Crack Detector), 
proceeds in accordance to a percolation model, 
similarly to the detector described in Yamaguchi & 
Hashimoto (2010). It actually consists in a region-
growing scheme that starts from a seed pixel and 
propagates in accordance to a set of rules that take 
into account the geometry of the crack. In this case, 
the rules are defined to identify dark, narrow, and 
elongated sets of connected pixels.  

Seed pixels are defined over a regular grid with a 
step of  pixels, and are required to coincide with an 
edge not belonging to an already detected crack and 
whose gray level is dark enough. To ensure that the 
relevant edges are always considered, a dilation step 
follows the edge detection, where the dilation thick-
ness is in accordance to . Furthermore, since, as 
mentioned above, the crack detector operates under 
the guidance of the corrosion detector, seed pixels are 
required to have been labelled as corrosion by 
WCCD. The propagation proceeds over the dark 
neighbouring pixels until reaching an N  N bound-
ary. Then, the elongation of the percolated area is 
checked to be large enough. If that is the case, the per-
colation process continues until reaching an M  M 
(M > N) boundary. The final percolated area is classi-
fied as a crack if: (1) its average gray level is dark 
enough and (2) its elongation is large enough. Other-
wise, the region is discarded, and another percolation 
starts at a different seed pixel. 

5.2.3 Illustrative results 

Figure 8 shows some examples of corrosion detec-
tion. The output is colour-coded in accordance to how 
frequent is the colour of the underlying pixel in the 
CBC class: the more reddish, the more frequent. 

Next, Figure 9 shows some results of crack detec-
tion followed and guided by corrosion detection. 

6 CONCLUSIONS 

This paper has described a collection of tools, devel-
oped within the frameworks of the INCASS and the 
MINOAS projects, whose goal is to provide decision 
support at the defect detection level during inspection 
operations. This toolbox comprises an aerial platform 
for inspection data collection, together with the un-
derlying control architecture, specifically developed 
for visual inspection operations, and a number of soft-
ware tools aiming at improving the presentation of in-
spection data (through image stitching) and the auto-
matic detection of defects. 
 



 

 

 

 
 
Figure 8. Examples of CBC detection: [rows 1 & 3] original im-
ages, [rows 2 & 4] processed images (see text for the colour 
code). 

 

 
 
Figure 9. Examples of corrosion-guided crack detection: [top] 
original images, [bottom] processed images (cracks indicated in 
light blue). 
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