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Abstract

Seagoing vessels have to undergo regular visual inspections in order to detect the typical defective situations affecting metallic
structures, such as cracks and corrosion. These inspections are currently performed by ship surveyors manually at a great cost. This
paper describes a Micro-Aerial Vehicle (MAV) intended for the visual inspection of cargo holds, whose development, among others,
takes place within the context of the EU-funded H2020 project ROBINS, with the purpose of making ship inspections safer and more
cost-efficient. The vehicle is equipped with specific sensors that are to permit teleporting the surveyor to the areas that need inspection.
The focus of the platform control software is on providing enhanced functionality and autonomy for the inspection processes. All this
has been accomplished in the context of the supervised autonomy paradigm, by means of the definition of different autonomy levels
and functionalities (including obstacle detection and collision prevention), and extensive use of behaviour-based high-level control,
all intended for visual inspection. Automatic detection of defects is also addressed as part of ROBINS goals, through the adoption of
deep learning approaches for enhanced performance. Results for some experiments conducted to assess the different functionalities
are reported at the corresponding sections of the paper. Copyright c© CEA.
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1. Introduction

The movement of goods by vessels is today one of the most
time- and cost-effective ways of transportation. Nowadays, the
demand for maritime transport services is dealt by large-tonnage
vessels specific for the kind of product to freight, namely oil
tankers, bulk carriers, and general cargo or container ships, to
name but a few. As any other installation or infrastructure, this
type of vessels requires regular maintenance to avoid its deteri-
oration due to a varied set of causes, ranging from design mis-
takes, use of sub-standard materials or procedures, structural
overload or normal decaying of the metallic structures in the
sea. Otherwise, accidents can result, with maybe catastrophic
consequences for the crew (and passengers), environmental pol-
lution or damage and/or total loss of the ship, its equipment and
its cargo.

Inspections onboard sea-going vessels are regular activities
being initiated partly due to applicable classification and statu-
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tory regulations, and partly because of the obvious interest of
ship operators and ship owners in anticipating the defective sit-
uations, given the costs associated to unexpected disruptions of
vessel service availability, not only because of the cost of the
damages repair, but also regarding lost opportunity costs while
the ship is inoperable.

Structural failures are the major cause of such accidents. For
these reasons, an important part of the inspection effort focus
on ensuring that the hull surfaces and structures are all in good
condition. Those structures and surfaces can be affected by dif-
ferent kinds of defective situations, such as coating breakdown,
corrosion, and, ultimately, cracks. The presence and spread of
these defects are indicators of the state of the vessel hull and, as
such, an early detection prevents the structure from buckling or
fracturing, and ultimately avoids major problems.

To perform a complete hull inspection, the vessel has to be
emptied, cleaned and/or ventilated, maybe situated in a dock-
yard, and access arrangements have to be installed (e.g. tem-
porary staging, lifts, movable platforms, etc., see Fig. 1) to al-
low the workers for close-up inspection —i.e. to the reach of a
hand. Unfortunately, continuous monitoring of the structure at a
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Figure 1: (left) Staging required during a vessel inspection. (right) Oil
tanker in shipyard during construction.

required level of detail, with proper identification and/or assess-
ment of defects, is not trivial and can be quite expensive (once
the inspection costs are factored out into the use of yard facil-
ities and the vessel’s preparation, i.e. cleaning, ventilation and
provision of access arrangements).

In this regard, since visual inspections are and will be an
important source of information for structure condition assess-
ment, it seems necessary to try to reduce the effort and cost re-
lated to these activities with the introduction of new technologi-
cal tools which can complement, make safer or even replace the
in-situ human inspections, at least for those ships where there is
a real cost saving, i.e. the inspection is likely to result in no re-
pair, so that the preparation of the vessel for a human inspection
is for the inspection itself (see Ortiz et al. (2010) for a deeper
analysis).

This paper describes recent progress in the EU-funded
H2020 project ROBINS (https://www.robins-project.
eu/). In this project, the UIB team participates to develop,
among others, an aerial platform specifically devised for the
collection of inspection data from vessels’ wide spaces, such as
cargo holds, focusing on fitting the robot with enhanced auton-
omy functionalities for those particular areas. Besides, the UIB
team also contributes with new visual methods for defect detec-
tion in images. After a first year since the project start in 2018, a
first almost-complete version of the platform is available at both
the hardware and software levels, together with software mod-
ules for processing the collected inspection data, e.g. for 3D
reconstruction and defect detection. Advances in some of the
different sides of the project are reported along the next sections
of the paper.

2. Aerial Platform

Among others, the vertical structures that can be found in
vessel holds are of prime importance (see Fig. 1). To make
proper repair/no repair decisions, the surveyor must be provided
with, among others, imagery detailed enough so as to enable the
remote visual assessment of these structures. To this end, the
platform can be either required to sweep the relevant metallic
surfaces and grab pictures at a rate compatible with its speed,
or else provide visual evidence of the state of a particular area
suspected of being defective. Those images must as well be
tagged with pose information, so that the areas suspected of be-
ing defective can be located on the vessel structure, or even for
comparing images across inspections.

Therefore, the main requirements for the aerial platform
stem directly from the very nature of the inspection process:
the vehicle must be able to perform vertical, stationary and low

speed flight, as well as permit indoor flight. These require-
ments rapidly discard fixed-wing aircrafts and focus the search
on helicopter-type UAVs, naturally capable of manoeuvres such
as hovering and vertical take-off and landing (VTOL). Addi-
tionally, the platform should not only rely on GPS data for po-
sitioning because it could be required to operate indoors or in
poor GPS reception areas (e.g. due to satellites being occluded
by the vessel structures, multi-path effects, etc.)

Because of their fast deployment times and convenient size,
a number of recent works have considered the use of multirotor-
based Micro-Aerial Vehicles (MAVs) within the context of the
inspection and monitoring of industrial facilities and assets, for
data collection at remote or safety-compromised areas, difficult
to reach by humans and ground vehicles, and with large areas
to be covered as fast as possible. The aforementioned works
consider, among others, power plant boilers (Burri et al., 2012;
Nikolic et al., 2013), dam walls and penstocks (Ozaslan et al.,
2015), bridges (Jimenez-Cano et al., 2015), power lines (Araar y
Aouf, 2014), wind turbines (Stokkeland et al., 2015), mines and
tunnels (Gohl et al., 2014), petrochemical facilities (Huerzeler
et al., 2012), and large-tonnage vessels (Ortiz et al., 2016; Fang
et al., 2016).

The popularity these vehicles have gained in recent years
has lead to the availability of a number of control and nav-
igation solutions. They differ mainly in the sensors used to
solve the navigation tasks, the amount of processing that is
performed onboard/off-board, and the assumptions made about
the environment. Apart from other devices, such as infrared
and ultrasound sensors, laser scanners (Bachrach et al., 2011;
Dryanovski et al., 2013) and, lately, vision cameras (Achte-
lik et al., 2012; Chowdhary et al., 2013; Engel et al., 2014;
Fraundorfer et al., 2012; Shen et al., 2013; Troiani et al., 2015)
have become the preferred sensor modalities to undertake these
tasks, mostly within Simultaneous Localization and Mapping
(SLAM) frameworks and combined with Inertial Measuring
Units (IMU).

2.1. Platform Overview

The aerial platform is based on a multi-rotor design fitted
with a Flight Management Unit (FMU) for platform stabiliza-
tion in roll, pitch and yaw, and thrust control, a 3-axis IMU
—which, according to today standards, is typically part of the
FMU—, a sensor suite able to supply vehicle 3D speed and
height measurements, as well as distances to surrounding ob-
stacles, inspection sensors and an embedded PC which avoids
sending sensor data to a base station, but process them onboard
and, thus, prevent communications latency inside critical con-
trol loops. Figure 2 shows a realization of this platform taking
as a basis the Matrice 100 quadrotor by DJI.

Apart from the FMU, the realization of Fig. 2 features:

• The lightweight laser scanner Hokuyo UST-20LX, which
provides 20 meters coverage for a 270◦ angular sector.
This sensor is used to estimate 2D speed as well as dis-
tances to the surrounding obstacles.

• A downward-looking LIDAR-Lite v3 laser range finder
used to supply height data for a maximum range of 40
meters. This sensor complements the barometric pressure
sensor the vehicle is typically fitted with as part of the
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Figure 2: ROBINS aerial platform, fitted with a laser scanner, a height sen-
sor, a camera set feturing LED-based illumination, and an embedded PC.

FMU. Vertical speed is estimated by proper differentiation
of the height measurements.

• Two cameras to collect, from the vessel structures under
inspection, RGB-D images on demand (Intel Realsense
D435i camera, fitted with a 6 DOF IMU and capable of
delivering 1920×1080-pixel RGB images —Omnivision
OV2740 rolling shutter imaging sensor, 77◦ FOV, 30
FPS— and 1280×720-pixel depth images —active stereo-
based sensing using Omnivision OV9282 global shutter
100◦ FOV imaging sensors, 94◦ FOV laser IR projector,
depth range 0.2 - 10m, 90 FPS) and video footage (Zen-
muse X3 mounted on a gimbal, 4000×3000-pixel Sony
EXMOR CMOS 1/2.3” imaging sensor, 94◦ FOV, 24 FPS).

• Two 7W DC20-24V pure white LEDs, supplying 2×700
lumen for a 140◦ beam angle.

• An Intel NUC7I7BNH embedded PC featuring an Intel
Core i7-7567U 2×3.5GHz processor and 16 GB RAM

Apart from other sensor suites capable of also supplying speed
and height measurements, the previous configuration allows
navigation under low-light conditions, as required in certain
vessel compartments such as e.g. oil tanker cargo holds, for
which a single manhole-sized entry point is typically available
(see Fig. 3). Further, the LED-based system is intended to fa-
cilitate the capture of useful images despite the absence of am-
bient lighting. Thanks to a specific power system, they can be
remotely dimmed from the embedded PC to adjust to the avail-
able illumination and the operating distance to the walls during
flight.

2.2. Control Architecture

From a control viewpoint, the aerial platform implements
a control architecture that follows the Supervised Autonomy
(SA) paradigm (Cheng y Zelinsky, 2001). This is a human-
robot framework where the robot implements a number of
autonomous functions, including self-preservation and other

Figure 3: (left) Oil tanker manhole entry point. (right) Typical oil tanker
cargo hold.

safety-related issues, which make simpler the intended opera-
tions for the user, so that the operator, which is allowed to be
within the general platform control loop, can focus in accom-
plishing the task at hand. Within this framework, the commu-
nication between the robot and the user is performed via qual-
itative instructions and explanations: the user prescribes high-
level instructions to the platform through an adequate Human
Interaction Device (HID) while the robot provides instructive
feedback.

In our case, qualitative commands can be issued through both
a Radio Controller (R/C) and a gamepad, as well as from the
input side of the Graphical User Interface (GUI), while the robot
feedback is handled from the output side of the GUI. While the
platform is taking care of attitude stabilization, speed and height
control, as well as prevents collisions, the user is only required
to issue simple/qualitative commands related to the inspection
operation, such as go up, go down, go left, go right, advance in
a certain direction, etc.

The architecture comprises two separate agents: the MAV
and the Base Station (BS). All the state estimation and control
algorithms run over the computational resources of the MAV:
as usual, the FMU runs low-level control tasks —attitude sta-
bilization and direct motor control—, while the embedded PC
executes, on top of the Robot Operating System (ROS) run-
ning over Linux Ubuntu, high-rate ROS nodes that (1) imple-
ment mid-level control tasks —height and speed controllers—,
and (2) estimate velocity and height, as well as the distances
to the closest obstacles surrounding the platform. Lower-rate
top-level control also runs over this processor in the form of a
number of different behaviours that implement the higher level
autonomous functionalities of the platform. These behaviours
combine the user desired speed command with the available
sensor data, to obtain final and safe speed and height set-points
that are sent to, respectively, the speed and height controllers.

The BS mainly runs the GUI used to supply the operator with
information about the state of the platform as well as about the
task in execution, e.g. images collected via the vision system
attached to the platform. It runs ROS over Linux Ubuntu and is
linked with the MAV via DJI Lightbridge and 5 GHz WiFi con-
nections. The qualitative user commands and the robot feedback
travel, respectively, forth and back through them.

The MAV control software has been designed around open-
source components and following modularity and software re-
utilization principles. In this way, adapting the framework for
different platforms involving different payloads, or the selective
activation of software modules, can be performed in a fast and
reliable way.

Figure 4 overviews the mid- and hich-level control layers of
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the control architecture. The details can be found next.

2.2.1. State estimation
The estimation of the MAV state starts by pre-processing the

available navigation data through the IMU conditioner, Range
conditioner and Laser-scan conditioner modules (purple mod-
ules in Fig. 4), Depending on the sensor, they counteract biases,
filter outliers and/or perform roll and pitch compensation on the
basis of the IMU respective angle values.

Next, on the one hand, the processed scan is used to (1)
supply other modules with distances to the closest surrounding
obstacles (DTO) and (2) feed the Laser-scan matcher module,
which computes the platform 2D roto-translation between con-
secutive scans using the IMU yaw for initialization.

On the other hand, the processed height reaches the Height
estimator module which (1) calculates the difference between
two consecutive measurements and decides whether the change
is due to motion along the vertical axis or because of a disconti-
nuity in the floor surface (e.g. the vehicle overflies a table), and
(2) supplies filtered height and vertical speed, through a linear
Kalman Filter fed by the laser and barometric altimeters.

Finally, XY and Z velocities, together with the IMU acceler-
ations, enter the Velocity estimator module to yield a final 3-axis
speed estimation, also through Kalman filtering.

2.2.2. Generation of speed commands
Speed commands are generated through a set of robot be-

haviours organized in a hybrid competitive-cooperative frame-
work (Arkin, 1998). That is to say, on the one hand, higher
priority behaviours can overwrite the output of lower priority
behaviours by means of a suppression mechanism taken from
the subsumption architectural model. On the other hand, the
cooperation between behaviours with the same priority level is
performed through a motor schema, where all the involved be-
haviours supply each a motion vector and the final output is their
weighted summation. An additional flow control mechanism se-
lects, according to a specific input, between the output provided
by two or more behaviours.

A total of four general categories of behaviours have been
identified for the particular case of visual inspection: (a) be-
haviours to accomplish the user intention, which propagate the
user desired speed command, attenuating it towards zero in the
presence of close obstacles, or keeps hovering until the WiFi
link is restored after an interruption; (b) behaviours to ensure
the platform safety within the environment, which prevent the
robot from colliding or getting off the safe area of operation,
i.e. flying too high or too far from the reference surface un-
der inspection; (c) behaviours to increase the autonomy level,
which provide higher levels of autonomy to introduce further
assistance during inspections; and (d) behaviours to check flight
viability, which checks whether the flight can start or progress
at a certain moment in time. Some of the behaviours in groups
(a) and (c) can operate in the so-called inspection mode. While
in this mode, the vehicle moves at a constant and reduced speed
(if it is not hovering) and user commands for longitudinal dis-
placements or turning around the vertical axis are ignored. In
this way, during an inspection, the platform keeps at a constant
distance and orientation for improved image capture.

2.2.3. Flight control
The MAV flight control is implemented as a finite state ma-

chine that comprises five states: landed, taking off, flying, de-
scending and landing. The transitions between the states take
place when the particular conditions are met. For example, the
vehicle changes from landed to taking off when the user issues
the take-off command from the HID. Some other transitions do
not depend on the user commands but on sensor data and on the
vehicle state, e.g. the vehicle changes from taking off to flying
when the estimated height is above a certain value (0.5 m) or
after some time at a high level of motor thrust.

The landing procedure is split into two stages: descending,
which is in charge of reducing the flight height to ensure that
the platform is close enough to the floor (about 0.5 m) before
the platform enters the landing stage.

When the vehicle is in the flying stage, three PID controllers
are in charge of keeping the speed command in the longitudi-
nal, lateral and vertical axes (resp. X, Y and Z axes). When the
speed command in the vertical axis is zero, the vertical speed
PID controller is disabled while a height PID controller acti-
vates. While in the descending stage, the vertical speed con-
troller is in charge of the platform although the different be-
haviours are still active to obey user-ordered movements along
the X and Y axes, prevent collisions, etc.

2.3. Results from Field Trials

This section reports on a number of inspection missions per-
formed during first field trials taking place onboard a 12.000
DWT Ro-Ro Cargo vessel while at drydock at the end of March
2019. Tests were performed at the Main Deck cargo hold (first
day) and at the TankTop cargo hold (second day, one floor be-
low the main deck), both dry spaces of the vessel. It was a
rather new vessel, built in 2012, which was in good condition,
but served as a successful test bench for the different function-
alities of the aerial platform. Thanks to the design of the base
station and the vehicle, deployment times were about 5 minutes.
Images from the field trials and plots for some of the flights are
shown in Fig. 5.

3. Inspection Data Collection Capabilities

During flight, the aerial platform is intended to collect in-
spection data on demand or at a fixed rate, e.g. 10 fps, as well
as log flight data. Regarding the latter, the vehicle pose, i.e. 3D
position and 3D attitude, as well as the distance to inspected
surfaces become of particular relevance here in order to be able
to associate 3D position and scale information to the data col-
lected and ultimately to the defects found after processing the
images gathered. Besides, as an additional functionality during
inspection missions, we aim at ensuring proper surface cover-
age in order to supply the surveyor with complete information
about the surface under inspection, e.g. a bulkhead. This is also
to contribute in an effective way to the 3D reconstruction of the
area from the visual data collected.

To implement the two aforementioned functionalities, the
platform not only needs to estimate its speed but also its po-
sition, as well as it has to plan its motion to properly cover the
areas of interest. Figure 7 overviews the part of the control ar-
chitecture which is in charge of position estimation and control,
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Figure 4: MAV state estimation modules (purple and dark blue modules) and mid- and high-level control layers (resp. brown and orange modules).

as well as the coverage of the area under inspection (see Fig. 6
for an illustration of the type of coverage).

This section of the control software is still under develop-
ment, although its design is already terminated and it is what is
briefly described next (see Fig. 7). On the one hand, the module
Full state estimator is intended to supply through an Extended
Kalman Filter (EKF) reliable position estimates by fusing in a
flexible way the available navigation data and a number of dif-
ferent positioning sources, such as GPS if available (while oper-
ating with the hold doors open), wireless-based localization, e.g.
by means of Ultra-Wide Band (UWB) beacons, laser or vision-
based SLAM modules, e.g. gmapping, etc. On the other hand,
in accordance to a mission description generated by means of
the GUI, the Inspection manager module is to generate a suit-
able sequence of Go to goal commands which, properly exe-
cuted by the Position controller, are to ensure that the platform
reaches a planned sequence of waypoints.

4. Defect Detection

Steel surfaces can be affected by different kinds of defective
situations, being coating breakdown/corrosion (CBC), in any of
its different forms, the most common defect. As already men-
tioned, an early detection prevents vessel structures from suf-
fering major damage which can ultimately compromise their
integrity. ROBINS aim in this regard is to simplify visual in-
spection processes by means of tools for conveniently visual-
izing the inspection data collected, as well as by detecting and
highlighting potential defects so as to draw the attention of the
surveyor to relevant points of the hold under inspection.

To counteract complex lighting conditions and a great di-
versity of other conditions due to data obtained from possibly
different robots, ROBINS approach for defect detection adopts
Deep Convolutional Neural Networks (DCNN)-based method-
ologies as highly robust machine-learning approaches. As al-
ready known, recently DCNNs have already showed good re-
sults for object recognition in images (Maturana y Scherer,
2015), although what is most interesting is the fact that they
have been shown highly promising for industrial inspection ap-
plications (Weimer et al., 2016). In contrast to manually de-

signed image processing solutions, DCNNs automatically gen-
erate powerful features, i.e. learn the representation, from train-
ing data by means of hierarchical learning strategies with a min-
imum of human interaction or expert process knowledge.

In more detail, in this section we report on detection results
for pixel-level CBC detectors based on deep learning seman-
tic segmentation through a fully convolutional neural network
(FCN) trained end-to-end. These networks learn and predict
dense outputs from a whole-image-at-a-time by dense back-
propagation/feedforward computation (Long et al., 2015).

As part of the fine-tuning of the detector for the problem at
hand, we have considered up to four different loss functions for
the FCN-8s architecture described by Shelhamer et al. (2017).
Due to their characteristics, this variant allows the detector to
find both large and small image areas affected by CBC, typically
corresponding to, respectively, general corrosion and pitting.

As for the loss functions, Table 1 compares the results ob-
tained from the Focal Loss (FL) function (Lin et al., 2017), the
Dice Loss (DL) function (Sudre et al., 2017), and the Softmax
(SO) and binary Cross Entropy (CE) functions already available
in Caffe (Jia et al., 2014). Performance is measured in terms
of standard metrics for semantic segmentation solutions Shel-
hamer et al. (2017), such as pixel accuracy (PA), mean accu-
racy (MA), mean region intersection over union (mIU) and fre-
quency weighted IU (fwIU), as well as through the traditional
precision (P) and recall (R) values. Distance to the (1,1) point in
P-R space is also provided as column D, to compare the detector
with a perfect classifier. As can be observed metric values are
quite similar for the different loss functions when segmentation
metrics are considered, while major differences are observed for
P-R values, being the DL and FL functions the winning options.
Figure 8 shows CBC detection results for the fine-tuned version
of FCN-8s trained by means of both the DL and FL functions.

5. Conclusions

A Micro-Aerial Vehicle to be used for vessel visual inspec-
tion of vessel cargo holds has been described. The MAV control
approach is based on the SA paradigm, and hence the user is in-
troduced in the platform control loop. For the specific prob-
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Figure 5: Field trials: (1st rpw) Ro-Ro vessel, Main Deck cargo hold, and TankTop cargo hold; (2nd row) Base Station, images of the platform during inspection
flights; (3rd/4th rows) estimated paths for different sweeping flights in the cargo holds.
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Figure 6: Example of paths which could be followed by the MAV to ensure
an adequate level of coverage of the structure under inspection.

Figure 7: Software modules involved in inspection data collection.

lem of visual inspection, a behaviour-based control architec-
ture tightly linked to the SA paradigm, including aspects such
as vehicle state estimation, behaviour-based command gener-
ation and flight control, has been outlined. Results from first
field trials, regarding control architecture validity and useful-
ness for visual inspection, have been reported. Furthermore, a
deep learning-based CBC detector has been discussed and some
experimental results shown.
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Figure 8: Detection results for FCN-8s and different loss functions: (1st col) original image, (2nd col) ground truth, (3rd col) DL result and (4th col) FL result.
[Detection results are shown in green superimposed over the original image.]
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