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Abstract—Seagoing vessels have to undergo regular visual
inspections in order to detect defects such as cracks and cor-
rosion before they result into catastrophic consequences. These
inspections are currently performed manually by ship surveyors
at a great cost, so that any level of assistance during the inspection
process would significatively decrease the inspection cost. In this
paper, we describe a novel framework for visually detecting the
aforementioned defects. This framework is generic and flexible
in the sense that it can be easily configured to compute the
features that perform better for the inspection at hand. In this
regard, inspired by the idea of conspicuity, this work considers
contrast and symmetry as features for detecting defects on
vessel structures. A combination operator is additionally tested
in order to merge the information provided by these features and
improve the detection performance. Experimental results for the
different configurations of the detection framework show better
classification results than state of the art methods.

I. INTRODUCTION

Vessels are nowadays one of the most cost effective ways
to transport goods around the world. Despite the efforts to
avoid maritime accidents, these still occur, and, from time to
time, have catastrophic consequences in environmental, human
and/or economic terms. Structural failures, such as cracks and
corrosion, are the main cause of these accidents.

Classification Societies impose extensive inspection
schemes in order to ensure the structural integrity of vessels.
To carry out this task, the vessel has to be emptied and
situated in a dockyard where high scaffoldings are installed to
allow the human inspectors to access the highest parts of the
vessel structure. This process can mean the visual assessment
of more than 600,000 m2 of steel. Besides, the surveys are
on many occasions performed in hazardous environments
for human operation. Moreover, total expenses involved by
the infrastructure can reach up to one million dollars for
certain sorts of vessels. Therefore, it is clear that any level
of automation of the inspection process that can lead to a
reduction of the inspection time/costs and an increase in the
safety of the operation is fully justified.

The European project INCASS has among their goals the
development of a micro-aerial vehicle fitted with cameras, to
be used for the visual inspection of vessels [1]. The collected
images are intended to be processed afterwards to detect the
defective areas. Regarding the latter, this paper presents a
novel approach for automatic detection of defects in images
taken from vessel structures. A framework is proposed as a

generic classifier that can be configured to make use of dif-
ferent features, potentially leading to different defect detectors
each. Furthermore, the framework foresees the combination of
the respective feature responses in order to enhance the overall
output quality. The conspicuousness of defects in general,
together with the kind of defects that can be expected in
metallic surfaces (i.e. cracks and corrosion), have guided the
feature selection process.

Literature contains just a few contributions regarding defect
detection over vessel structures. For example, [2] presents
a method to identify structural anomalies over image re-
constructions of underwater ship hulls. Restricting to those
contributions which use just visual sensors, [3] and [4] present
detectors of cracks and corrosion for vessel structures. The
drawback of these methods is that they require a previous
training stage (e.g. to learn which is the color of corrosion) or
tuning their working parameters (e.g. to know how thin and
elongated must be a dark collection of pixels to be considered
as a crack), whose value is typically related with the distance
from which the images have been taken. The use of such
previous stages is common among many contributions for
defect detection in regular surfaces (see for example [5], [6]).

To the best of our knowledge, only one method has been
published for generic defect detection in vessel structure
images [7]. This approach makes use of a Bayesian framework
to compute the probability for every pixel of corresponding to
some kind of defective situation. This probability is based on
the information learned in a previous training stage.

II. A FLEXIBLE FRAMEWORK FOR DEFECT DETECTION

The design of the defect detector has been oriented towards
a flexible framework which allows an easy integration of
different features and their combinations. To attain this level
of flexibility, we considered that the framework must cover the
following aspects: (1) it should allow computing one or more
features that are potentially useful to discriminate between
defective and non-defective areas; (2) final features response
should not depend on scale; (3) one or more combination op-
erators should be available to merge the information provided
by the features and try to find the combination (if any) that
improves the classification performance; and (4) related to the
previous point, one o more normalization operators should be



available to adapt all the features responses to a certain range,
in order to prevent loosing information when combining them.

This generic framework has been designed as a modular
pipeline which involves different stages that can be configured
(or even removed) depending on our needs, so that different
configurations result into different defect detectors (see Fig. 1).
Within the framework, each feature is intended to be computed
as a different thread and the information that they all provide
can be finally combined to make up the detection output.

The framework consists of the following stages:
• Pre-feature computation. The first stage provides the

information necessary to compute the features. From
an input color image one can obtain, for example, the
gray-scale image, the saturation image (from HSV color
space), etc. These images are called pre-feature maps.

• Scale-space generation. This stage scales the pre-feature
maps using a range of scale factors to obtain a collection
of pyramids. The computation of each pyramid level
can include filtering the input map using some kind
of kernel. One can compute, for example, a Gaussian
pyramid which progressively low-pass filters and sub-
samples the pre-feature map, an oriented Gabor pyramid
for a preferred orientation θ, etc.

• Feature computation. This is the core stage within the
pipeline. It is in charge of computing the value of the
features for all the pixels of the image. Since this can be
fed with one or more multi-scale pyramids, each feature
can be computed combining the information provided at
different scales. The outputs are called feature maps.

• Normalization. It normalizes the different feature maps
to the same range of values to enable their combination.

• Combination operator. The last stage combines the nor-
malized feature maps in order to obtain a single map,
which is called the defect map. The mean and the median
operators are some examples of simple combinations.

The resultant defect map is a single-channel map where
defective areas are supposed to be labelled with higher values.

III. DETECTING DEFECTS ON VESSEL STRUCTURES

Vessel structures consist of large surfaces that usually
present a regular texture. When these surfaces are inspected
from a certain distance, a defect represents a discontinuity
that alters the regularity of the texture. Based on that, texture-
related features seem to be a good option to differentiate
between defective and non-defective areas.

Furthermore, defects can also be considered as rare phe-
nomena that may appear on such regular surfaces. Since they
are rare, defects potentially attract the visual attention of the
surveyor during a visual inspection process. Following these
ideas, we propose to use texture-based features typically used
in cognitive models to predict human eye fixations.

Among them, we focus on those which can be evaluated
through a saliency map. This consists in a topographic map
that represents the conspicuousness of the different areas of the
input image [8]. This is typically shown as a gray-scale image
where locations with higher conspicuity values are closer to

white and less salient areas are closer to black. Notice that
this representation fits with our definition of defect map.

Taking all these considerations into account, contrast and
symmetry have been selected as the features for detecting
defects on vessel structures. Three different versions of the
defect detector have been developed: using only contrast, using
only symmetry, and using a combination of both features.

A. The Contrast-based Defect Detector

Local contrast in intensity, color and orientation is typically
used in computation models of attention, where these features
are usually combined into a single saliency map (e.g. [9], [10]).

The contrast-based saliency model by Itti et al. [11] has
been used as source of inspiration to design a contrast-based
defect detector. For its implementation, each one of the stages
of the generic pipeline has been particularized as follows:

• Pre-feature computation. Five pre-feature maps are com-
puted: (a) an intensity map using I = (r+g+b)/3 with r,
g and b being the red, green and blue channels of the input
image; (b) a red channel map using R = r − (g + b)/2;
(c) a green channel map using G = g − (r + b)/2; (d) a
blue channel map by means of B = b−(r−g)/2; and (e)
a yellow channel map using Y = (r+g)/2−|r−g|/2−b
(negative values are set to zero).

• Scale-space generation. Nine pyramids are generated:
five Gaussian pyramids for the pre-feature maps (I , R, G,
B and Y ) plus four Gabor pyramids computed from the
intensity map for orientations θ ∈ {0◦, 45◦, 90◦, 135◦}.
All the pyramids are computed to contain seven scales
ranging from 1:1 (scale one) to 1:64 (scale seven).

• Feature computation. The contrast level in intensity,
color and orientation is found as indicated in [11]. This
process consists in computing center-surround differences
between fine and coarse scales from the pyramids; that
is, it computes the difference between each pixel of a
fine (or center) scale c and its corresponding pixel in a
coarse (or surrounding) scale s. In our implementation
c ∈ {1, 2, 3} and s = c+ δ, with δ ∈ {3, 4}.
Furthermore, a normalization operator N(.) is used prior
to combine the across-scale differences into three con-
spicuity maps – I for intensity, C for color and O for
orientation – and also, before combining these maps to
obtain the final saliency map as S = 1/3(N(I)+N(C)+
N(O)).

Normalization and combination stages are not employed for
this version of the detector.

B. The Symmetry-based Defect Detector

A saliency model based on the Gestalt principle of symme-
try was presented in [12]. In their paper, they discuss local
symmetry as a measure of saliency and investigate its role
in visual attention. The results suggest that symmetry is a
salient structural feature for humans, as well as the suitability
of their method for predicting human eye fixations in complex
photographic images. Furthermore, their results show that,
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Figure 1. Generic framework for defect detection.

on many occasions, their symmetry operators outperform the
contrast-saliency model by Itti et al. [11].

For all these reasons, symmetry is the second feature that
has been selected for this study. To implement the symmetry-
based defect detector, each stage of the generic framework has
been particularized as follows:

• Pre-feature computation. It just computes an intensity
map as I = (r + g + b)/3.

• Scale-space generation. This stage computes a simple
sub-sample pyramid with five scales, ranging from 1:1
(scale one) to 1:16 (scale five).

• Feature computation. The symmetry value is computed
for each level of the pyramid using the isotropic operator
[12]. To obtain the final symmetry map, the five responses
(one per pyramid level) are normalized using the normal-
ization operator N(.) and finally added together across-
scale into an scale 1:1 map.

Normalization and combination stages are not employed for
this version of the detector.

C. Combination of Contrast and Symmetry

In order to deeper explore the possibilities of the selected
features, the generic framework has been configured once
more to combine the information that they convey. To imple-
ment this version of the defect detector, contrast and symmetry
maps are computed as indicated in the previous sections.
The normalization stage is now configured to implement
the normalization operator N(.) [11], which promotes the
areas labelled as potentially defective by any of the feature
maps. To merge the normalized maps, we propose the linear
combination: OR = 1/2(Co+ Sy). This operator allows any
defective point in any of the maps to be promoted so that it
stands out in the final defective map. This version of the defect
detector will be referred to as the OR configuration.

Figure 3 shows the generic pipeline configured to implement
the three versions of our defect detector.

IV. ASSESSMENT OF THE DEFECT DETECTOR

In this study, we have used a dataset comprising 73 images
of vessel structures including defective areas (cracks, coating
breakdown and different kinds of corrosion). The images
have been collected at different distances and at different
lighting conditions. This dataset is available online (http:
//dmi.uib.es/~xbonnin/resources) and also includes the ground
truth, consisting in black and white images where defects are
labelled in white (see Fig. 4:B).

In a first kind of experiments, we evaluated the performance
of the proposed defect detectors. Figure 4 presents some exam-
ples of defect maps provided for the different cases, namely,
the contrast-based detector, the symmetry-based detector and
the version which combines both features.

At first sight, it can be observed that all the defect detectors
tend to label as defective the areas that are indicated as
defective in the ground truth image. This suggests that the
different detectors can attain good classification rates.

In order to perform a quantitative evaluation, the True
Positive Rate (TPR), or sensitivity, and the False Positive Rate
(FPR), or fall-out, have been computed for the three defect
detectors. To this end, the defect maps were thresholded for
different values of a threshold τ to obtain the corresponding
ROC curves. Furthermore, the values for the Area Under the
Curve (AUC) have been calculated for all the ROC curves.
These results are presented in Fig. 2 using dashed lines.
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Figure 2. ROC curves and AUC values for the three versions of our defect
detector (dashed lines) and the SUN-based classifiers (continuous lines).

Comparing the different ROC curves and AUC values, some
interesting results can be stated: (1) the three new defect detec-
tors present good performances during the classification task,
with ROC curves relatively close to the (0,1) corner, and AUC
values above 0.8; (2) contrast performs better than symmetry
for the dataset employed in this study, what suggests that
contrast provides more information to discriminate between
defective and non-defective areas in vessel structures; (3) the
detector which combines both features provides slightly better
results than the version based only on contrast (i.e. symmetry
provides complementary information).

In a second kind of experiments, the performances of the de-
fect detectors presented in this paper have been compared with
the one presented in [7]. This algorithm combines contrast and
symmetry information through the Bayesian framework SUN
[13] to provide a saliency value for every pixel in the image.

Notice that, despite both approaches use contrast and
symmetry, the SUN-based detector requires from a training
stage to estimate the probability distributions, and its feature
combination is performed within a probabilistic formulation.
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Figure 3. The three versions of the defect detector implemented using our generic framework.
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Figure 4. Test images (A) with their associated ground truth (B) and defect
maps obtained using contrast (C), symmetry (D) and both features combined
through the OR operator (E).

To perform the assessment, three different configurations of
the SUN-based detector have been considered: using only con-
trast, using only symmetry and using both features. The three
configuration have been evaluated through Leave-One-Out-
Cross-Validation [14] and their corresponding ROC curves and
AUC values have been computed and included in Fig. 2.

As can be observed, the results obtained with the defect
detection framework presented in this paper are slightly better
than the ones obtained using the SUN framework. These
results are even better taking into account that our detectors
do not rely on knowledge learned during a previous learning
stage, as SUN-based detectors do.

V. CONCLUSIONS

A novel algorithm for defect detection on vessel structures
has been presented. It has been devised as a generic framework
that can be configured to select the features (and the way to
combine them) that provide a more successful classification
of the defective and non-defective areas. The selection of the
features for our particular problem has been inspired by the
idea of conspicuity and taking into account the kind of defects
that appear in the metallic structures of vessels.

The different configurations of the defect detector have
provided good classification performances. In comparison with
previous methods, the presented framework does not require

from tuning a large set of working parameters nor performing
a previous training stage. Furthermore, the use of pyramids
allows the algorithm to successfully detect the detective areas
in pictures taken from different distances.

As future work, the defect detector is planned to be assessed
with images collected using robotic devices (e.g. [1]).
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