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Abstract. Corrosion is one of the major causes of the structural defects that affect
vessel hulls. For its early detection, intensive inspections of the inner and outer
structures of the vessel hull are carried out at a great cost, where the visual assess-
ment plays an important role. In order to reduce the cost of the visual inspections,
we present a corrosion detector to identify defective areas in digital images taken
from vessel hulls. Two main contributions stand out: on the one hand, a specific
detector which combines color and texture features to describe corrosion; on the
other hand, a prior stage which implements a generic-defect search based on the
concept of saliency, and it is used to boost the specific corrosion detector. Both the
original and the saliency-boosted methods provide successful detection rates, but
the guidance by means of saliency allows for precision improvements.
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1. Introduction

The different steel surfaces that are part of a vessel hull can be affected by different kinds
of defective situations, such as coating breakdown, corrosion, and, ultimately, cracks.
These defects are indicators of the state of the metallic surface and, as such, an early
detection prevents the structure from buckling or fracturing, and the subsequent ultimate
consequences this can give rise to — at several levels, personal, environmental and fi-
nancial. To avoid reaching such undesirable situations, inspections on-board sea-going
vessels are regular activities being initiated partly due to applicable classification and
statutory regulations, and partly because of the obvious interest of ship operators and ship
owners in anticipating the defective situations, given the costs associated to unexpected
disruptions of vessel service availability. In line with the aforementioned, and in order
to enhance ships safety and avoid unexpected service disruptions, the INCASS project
pursues the integration in a Decision Support System of inspection data collection ap-
proaches using robots and specific sensors, together with a risk evaluation, analysis and
management framework comprising ship structures, machinery and equipment.

Among the different software and hardware components developed within the IN-
CASS project, this paper presents a vision-based corrosion detector to identify defective
areas in digital images taken from vessel hulls. This method is intended to be used as
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an assistant during the visual inspection of vessel structures, in order to reduce cost and
duration. It is based on colour and texture descriptors which are combined to describe the
appearance of corrosion. Furthermore, this paper proposes an additional improvement to
increase the detection performance of the presented corrosion detector. It consists in the
use of the generic defect detector presented in [1] as a prior stage, in order to filter out
those areas which seem not to be affected by any defective situation. This generic defect
detector is based on the idea of saliency, and has proved to provide successful detection
results with images including defective areas.

The computer vision literature contains a number of approaches for corrosion de-
tection. Some of them make use of simple methods, such as computing the histogram
of the red channel [4], or using a threshold in the HSV colour space [6], while other
approaches apply more advanced techniques, such as Support Vector Machines [9,8] or
Convolutional Neural Networks [5]. All of them are based on the use of colour and/or
texture descriptors, as we also propose for our approach.

The rest of the paper is organized as follows: Section 2 presents our approach for
corrosion detection, introducing the colour and texture features that are employed (2.1
and 2.2), detailing how these are combined to build up the detector (2.3), and providing
the experimental evaluation to check its performance (2.4); Section 3 introduces the idea
of using a generic defect detector to boost the performance of the corrosion detector, and
evaluates the improvement; to finish, conclusions are summarized in Section 4.

2. Detection of Corrosion in Vessel Structures

The corrosion detector has been built around a cascade classification scheme, where its
different stages can be considered as weak classifiers. The idea is to chain different fast
classifiers with poor performance in order to obtain a global classifier attaining a much
better global performance. To this end, each weak classifier takes profit from different
features of the items to classify, reducing the number of false positive detections at each
stage. For a good global performance, the classifiers must present a reduced false nega-
tive rate.

As mentioned before, two features are considered to describe corrosion: texture and
colour. Therefore, the corrosion detector comprises two stages, one for each feature. One
stage is based on the premise that corroded areas present a rough texture, while the other
stage checks whether the inspected area presents a colour typically observed in corroded
surfaces. This stage, thus, is based on machine learning and entails a previous training
process to learn the colour distribution of corrosion.

2.1. Model of Corrosion Colour: Local Stacked Histograms

The corrosion colour model that we propose consists in learning the colour distribution
through the neighbourhoods of corroded pixels. Given a corroded pixel, the histogram
for each colour channel is computed for its N×N pixels neighbourhood. The resulting
histograms are stacked together to build what we call a codeword.

Two different colour spaces have been considered. On the one hand, RGB is the most
common colour space as for sensing, representation and display of images in electronic
systems. On the other hand, the HSV colour model separates the colour and intensity



Figure 1. Codeword including colour information used to describe corrosion.

Algorithm 1 Procedure for RGB codewords dictionary generation.
1: procedure CODEWORDS DICTIONARY GENERATOR(I, GT, N, K)
2: I: input image training set
3: GT: image set comprising a ground-truth image for each image in I
4: N: patch size in pixels
5: K: Number of codewords to generate
6: for all image img in I do
7: for all pixel p of img do
8: if p is labelled as corrosion in the ground truth image then
9: Get the N×N patch Π centred at p

10: Compute the 32-bin histogram for the red channel of Π

11: Compute the 32-bin histogram for the green channel of Π

12: Compute the 32-bin histogram for the blue channel of Π

13: Stack the three histograms together
14: Save the resulting codeword
15: end if
16: end for
17: end for
18: Cluster codewords to K models using K-means
19: Save the models
20: end procedure

information. Indeed, the intensity information is not used in our approach, since we want
to learn the colour of corrosion disregarding the amount of light that illuminates the
surface.

Therefore, each codeword results from stacking three (R-G-B) or two (H-S) his-
tograms. These histograms are downsampled from 256 to 32 levels in order to reduce
its dimensionality and sensitivity to noise. Accordingly, each codeword comprises 96
values, if the RGB colour space is used, and 64, if HS is employed.

By way of example, Fig. 1 shows the codeword corresponding to the neighbourhood
of a corroded pixel for the RGB colour space. As can be observed, this codeword does not
preserve the spatial arrangement of intensity levels nor the relationship between colour
channels for the same pixel.

The learning stage consists in computing the codewords corresponding to the cor-
roded pixels in the image dataset and clustering them by means of the well-known K-
means algorithm [7]. The clustering process is performed in order to make the dictio-
nary more compact and general. The resulting K codewords represent the information
learned about the colour distribution around corroded pixels. Algorithm 1 describes the
computation of the codeword dictionary for the RGB colour space.



2.2. Model of Corrosion Texture: GLCM Energy

To describe the texture of corrosion we propose using the symmetric Gray-Level Co-
occurrence Matrix (GLCM). This matrix is defined over an image to be the distribution
of co-occurring pixel values (gray-scale values, or colours) at a given offset. That is,
every (i, j) value of the GLCM indicates the number of times in the input image that i
and j pixel values occur at the given offset.

To evaluate the roughness of the image, we consider the energy, also known as An-
gular Second Moment (ASM), of the GLCM [7]. The energy of a texture is related to
its roughness, so that the higher is the roughness the lower is the energy. The latter is
computed by means of

E = ∑
i

∑
j

p(i, j)2, (1)

where p(i, j) is the probability of the occurrence of values i and j at the chosen offset.
In our approach, the GLCM is calculated for downsampled intensity values between

0 and 31, for a given distance d pixels and direction α ∈ kπ/4 rad, where k ∈ [0,7], so
that eight directions are considered in order to compute the isotropic energy.

2.3. The Corrosion Detection Approach

To combine the colour and texture-based stages, we have considered their capability
for discarding non-defective areas, together with their computational cost. Taking these
criteria into account, the texture stage is executed in first place in order to reduce the
number of queries in the codewords dictionary.

Regarding the texture stage, this classifies every pixel as corroded or not depending
on whether the energy of the GLCM computed for the surrounding N×N patch is below
a given threshold τE .

The colour stage consists in building the codeword for the N×N image patch centred
in the current pixel and comparing with the models of the dictionary by means of the
Bhattacharyya distance

DB =− log

(
∑

x∈X

√
pc(x)pm(x)

)
, (2)

where X refers to the histograms domain and pc and pm are histograms from, respec-
tively, the patch codeword and the model from the dictionary.

A pixel is labelled as corroded as soon as a model is found in the dictionary such
that DB < τD. Therefore, the approach does not intend to determine which is the clos-
est model, but whether the patch is close enough to any model of corrosion, with the
consequently important reduction in the computation time.

The flowchart for the complete algorithm using this colour model is shown in Fig. 2
and its pseudocode, for the case of using the RGB colour space, can be found as Alg. 2.

2.4. Performance Evaluation

In this study, we have used a dataset comprising images of vessel structures includ-
ing different kinds of corrosion. The images have been collected at different distances
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Figure 2. Flowchart of the corrosion detector.

Algorithm 2 Corrosion detector using RGB codewords.
1: procedure CORROSION DETECTOR(img, N, τE , τD)
2: img: input colour image
3: N: patch size in pixels
4: τE , τD: energy and dissimilarity thresholds
5: Load codewords dictionary
6: Initialize img out to no-defect . No pixel is classified as corrosion
7: for all pixel p in img do
8: Get the N×N patch Π centred at p
9: Compute the energy e of Π

10: if e < τE then . Proceed with the colour stage
11: Compute the 32-bin histogram for the red channel of Π

12: Compute the 32-bin histogram for the green channel of Π

13: Compute the 32-bin histogram for the blue channel of Π

14: Stack the three histograms together into a codeword
15: while there are more models mod in the dictionary and
16: p has not been labelled in img out do
17: Calculate the Bhattacharyya distance D to the model mod
18: if D < τD then . The codeword is similar to the model
19: Label p as defect in img out . p is classified as corrosion
20: end if
21: end while
22: end if
23: end for
24: return img out
25: end procedure

and under different lighting conditions. This dataset also includes the ground truth con-
sisting in binary images where defects are labelled in white and it is available online
(http://dmi.uib.es/ xbonnin/resources).

To evaluate the detection performance of the corrosion detector, different values
of the parameters have been tested trying to find the best configuration. Regarding the
texture stage, the GLCM has been computed using a distance d = 5 pixels and an image



Table 1. AUC values for the corrosion detector. The best results are indicated in blue.

Threshold τE

0.2 0.4 0.6
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100 RGB 0.877 0.892 0.891
models HS 0.875 0.879 0.875

300 RGB 0.867 0.880 0.883
models HS 0.860 0.858 0.850

500 RGB 0.863 0.871 0.870
models HS 0.859 0.852 0.842

patch of 15×15 pixels, while the energy threshold τE has been set to different values
covering the full [0, 1] range.

Concerning the colour stage, its parameters can be configured regardless the selected
colour space. Local histograms are computed for 15×15 pixels patches, and, to create
the codewords dictionary, three different sizes have been evaluated: 100, 300 and 500
codeword models. Notice that, when using a larger dictionary, more comparisons are
performed prior to discarding non-defective pixels, what means a longer processing time.
The dictionaries are created following the Leave-One-Out Cross-Validation (LOOCV)
methodology [2], so that the image which is being inspected has not been used to create
the corresponding dictionary during the training stage. Finally, the dissimilarity threshold
τD has been set to different values in the [0, 1] range.

Several metrics are used to perform a quantitative evaluation of the performance
of the detector. In this regard, Fig. 3[top] shows the ROC curves (True Positive Rate
vs. False Positive Rate) obtained for all the images of the dataset, while Fig. 3[bottom]
provides the Precision-Recall (PR) curves [3]. Each curve corresponds to the use of a
specific dictionary size (100, 300 and 500) and energy threshold τE (0.2, 0.4 and 0.6), and
has been generated by variation of the codeword dissimilarity threshold τD. To facilitate
the comparison of the ROC curves, Table 1 provides the corresponding values for the
Area Under the Curve (AUC) [3].

As can be observed, all the combinations show a similar performance, with ROC
curves close to the (0, 1) corner (which corresponds to the perfect classifier), and AUC
values between 0.84 and 0.89 (close to 1, which is the maximum value). The best results
are obtained when using the smaller dictionary, which contains just 100 codewords. That
means that the use of larger dictionaries, with 300, 500 or even more codewords, leads
to overfitting and loss of generalization.

Regarding the colour space, the use of RGB codewords allows achieving a higher
precision at low recall values, while, for higher recall values, HS and RGB codewords
lead to a similar precision.

Table 2 provides the execution times required by the corrosion detector. These values
correspond to the mean execution times per pixel using the parameter configuration that
provides the best performance, based on the ROC curves presented in Fig. 3 [top]. The
table also provides the expected execution times required if a 1024×768 image was
processed. Notice that these are just estimations computed averaging the observed values.
Actually, the processing time depends on the percentage of corroded area in the specific
image considered. As can be observed, the use of RGB codewords entails an increment
of 40% in the execution time, with regard to the use of HS codewords.
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Figure 3. Performance of the corrosion detector: (top) ROC curves and (bottom) PR curves. Each curve corre-
sponds to the use of a different combination colour space/energy threshold, and has been generated by variation
of the threshold τD. Each column corresponds to a different dictionary size.

Table 2. Execution times of the corrosion detector using the different colour models. Mean values computed
using the parameter configurations that provide the best performance.

RGB HS
µs / pixel 31.12 22.26

seconds / 1024×768 image 24.47 17.50

Figure 4 shows some results of the corrosion detector using the different colour
spaces. As can be observed, both configurations are able to successfully detect the cor-
roded areas in the input images, and their results approximately match the ground truth.

3. Saliency-boosted Corrosion Inspection

In this section we combine the image saliency-based generic defect detector proposed
in [1] to boost the corrosion detector described in Section 2. That is to say, the idea is
to take advantage of the high performance of the generic defect detector to discard non-
defective image areas, and then use the specific detector to select, within the salient areas,
those pixels affected by corrosion.

Among the different configurations of the saliency-based defect detector described
in [1], we have selected the OR configuration. This version combines image contrast-
based saliency and image symmetry-based saliency into a single defect map. As shown
in [1], this setup outperforms the configurations which are based only on one of these
two saliency-related features.
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Figure 4. Corrosion detection results for some images of the dataset: (A) input image, (B) ground truth, (C-D)
corrosion detection outputs using, respectively, RGB and HS codewords.

The saliency-based defect detector has been configured to improve the performance
of the corrosion detector. To be precise, the saliency threshold τS, which is used to filter
the potentially defective areas, has been set to provide a very high True Positive Rate
(TPR), despite this means to move a bit further from the (0, 1) corner in the ROC space,
increasing the False Positive Rate (FPR). The idea is to ensure that all the corroded pixels
are not discarded by the first stage, but are input of the corrosion detector, i.e. to keep the
false negatives close to zero.

Figure 5 [left] shows the ROC curve corresponding to the corrosion detector (using
the configuration which provides the best results) together with the point corresponding
to the saliency-based generic defect detector, once the threshold τS has been configured
as indicated before. As can be observed, this point is situated in the coordinates (0.31,
0.97) of the ROC space, which is above the curve provided by the corrosion detector.

Notice that, if the output of the generic defect detector is provided as input to the
corrosion detector, the new ROC curve resulting from varying its parameters will end up
at point (0.31, 0.97), which corresponds to the corrosion detector that labels as positive
all the pixels that have passed the first classifier. Therefore, we can expect that the new
ROC curve will pass above the original curve.

Figures 5 [middle] and 5 [right] compare the performance of the original corrosion
detector with the new version boosted by the saliency-based defect detector. As expected,



Figure 5. (Left) Performance of the corrosion and the saliency-based generic defect detectors. (Middle and
right) Performance of the saliency-boosted corrosion detector against the original method: (middle) ROC
curves, (right) PR curves. Performance curves obtained for energy threshold τE = 0.4, and by variation of
threshold τD.

the results show that the boosted version outperforms the original detector: on the one
hand, the new ROC curve is closer to the (0, 1) corner; on the other hand, the boosted
detector provides higher values of precision, as shown in Fig. 5 [right].

By way of example, Fig. 6 compares the output provided by the original and the
boosted versions of the corrosion detector using the same configuration of their parame-
ters (τE = 0.4 and τD = 0.175). As can be observed, the boosted version leads to less false
positives than the original version.

4. Conclusions

This paper has presented a novel corrosion detector to assist during the visual inspection
of vessels. This consists in the combination of texture and color features which are useful
to describe the appearance of corroded surfaces. Several metrics have been used to eval-
uate the performance of the method with a dataset including real vessel hull images. The
results indicate that the method is able to successfully label the corroded areas. Further-
more, a generic defect detector based on the idea of saliency has been used as a previous
stage in order to filter out non-defective areas. In the light of the results obtained using
this guidance, we can state that the saliency-based classifier allows boosting the specific
defect detector, reducing the false positive detections and, thus, increasing precision.
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