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I. INTRODUCTION

Ship accidents and near misses, with the corresponding
risk of crew and passengers injuries and fatalities, environ-
mental pollution, damage or total loss of the ship and its
equipment, can be frequently attributed to the failure of
structures and machinery. In order to enhance ships safety and
avoid unexpected service disruptions, the EC-FP7 INCASS
project pursues the integration in a Decision Support System
of inspection data collection approaches using robots and
specific sensors, together with a risk evaluation, analysis and
management framework comprising ship structures, machinery
and equipment.

This paper focuses on one of the robotic platforms, and on
a set of inspection data processing tools, all developed as a
sort of toolbox oriented towards automated visual inspection
of ships (which was actually initiated within the framework
of the prior EC-FP7 MINOAS project). We first describe
a multi-rotor based aerial platform which is used to collect
images from the surfaces under inspection, either focusing on
providing access to remote areas or for broader and intensi-
fied data acquisition. Next, we introduce an image stitching
software aiming at enhancing the presentation of the visual
data collected. Finally, we focus on defect detection with a
lightweight image saliency-based detector tuned for searching
for generic defects, what can be useful to either guide the
image capture onto relevant areas from the inspection point
of view or to guide specific crack and corrosion detectors,
also developed within the context of the MINOAS/INCASS
projects.

II. AERIAL PLATFORM FOR VESSEL INSPECTION

As previously said, the aerial vehicle is based on a multi-
rotor design. These robotic platforms have become increas-
ingly popular in recent years, and, as a consequence, a number
of control and navigation solutions can be found in the related
literature. They differ mainly in the navigation sensors used.
Apart from other devices, such as infrared and ultrasound
sensors, laser scanners [1] and, lately, vision cameras [2] have
become the preferred sensor modalities to undertake these
tasks, mostly within SLAM frameworks combined with IMUs.

Our control software has been configured to be hosted
by any of the research platforms developed by AscTec
(http://www.asctec.de), although it could be adapted to other

systems. In more detail, all platforms are fitted with a navi-
gation sensor suite that allows them to estimate the vehicle
state, which comprises the 3-axis speeds (vx, vy, vz), the
flying height z and the distances to the closest obstacles in
different orientations, e.g. left (dl), right (dr) and forward (df ).
These estimations can be performed by means of different
sensor combinations which permit preparing for the inspection
application either vehicles of low payload capacity or vehicles
able to lift a heavier sensor suite. By way of example,
Fig. 1 shows an AscTec Pelican platform fitted with a Flight
Management Unit comprising a 3-axis IMU and two ARM7
micro-controllers, together with a laser scanner for speed
estimation and obstacle detection and a laser-based height-
meter; this sensor suite is complemented with at least one
camera for collecting the visual inspection data. Finally, all
platforms carry an embedded PC which avoids sending sensor
data to a base station, but process them onboard and, thus,
prevent communications latency inside critical control loops,
e.g. the Pelican of Fig. 1 features an Intel NUC board with an
Intel Core i5-4250U 1.3 GHz processor and 4 GB RAM.

The control software is organized around a layered structure
distributed among the available computational resources. On
the one hand, the low-level control layer implementing attitude
stabilization and direct motor control executes over the main
micro-controller as the platform firmware provided by the
manufacturer. On the other hand, mid-level control, running
over the secondary microcontroller, comprises height and
velocity controllers which map input speed commands into
roll, pitch, yaw and thrust orders. Lastly, the high-level control
layer, which executes over the embedded PC, implements
an inspection-oriented control architecture that follows the
Supervised Autonomy paradigm [3] –by which the operator is
always allowed to be within the general platform control loop
though assisted by the robot– in the form of a reactive control
strategy. The latter combines the user desired speed command
with the available sensor data (vx, vy , and vz velocities, height
z and distances to obstacles dl, dr and df ), to obtain a final
and safe (against surrounding obstacles) speed set-point that
is sent to the speed controllers.

During flight, any of the aerial platforms can collect pictures
on demand or at a fixed rate, e.g. 10 fps, as well as log flight
data. The latter includes the vehicle pose, i.e. 3D position
and 3D attitude, the vehicle speeds and the distances to



Fig. 1. Pelican platform featuring a laser scanner (green), a laser-based height-
meter (red), video and still cameras (blue), and an embedded PC (yellow).

Fig. 2. Path estimated after a flight [left] and illustration of the defect
localization process after visual inspection [right].

the closest obstacles. Of particular relevance is the vehicle
pose, which permits associating a 3D position to the defects
found. For this purpose, laser-based and vision-based SLAM
methods have been integrated onboard the aerial platforms,
to be activated according to the available sensor suite. By
way of example, Fig. 2 (left) shows the path estimated by the
laser-based approach for one flight, as well as illustrates the
defect localization process after visual inspection through the
projection, as different coloured rectangles, of the bounding
boxes of the defects found (right).

III. INSPECTION DATA POST-PROCESSING

Typically, a large number of images are available after
an inspection operation. Along project INCASS, we have
addressed how to improve their presentation (instead of just
archiving them) and avoid at the same time the redundancy
that naturally results when the images are taken at a constant
rate, so that it is usually the case that a number of consecutive
images contain essentially the same information. The idea is to
determine the overlap between the different images collected
and use them and the detected overlap to build one single,
seamless composite image from the area under inspection. This
process, generically known as image mosaicing, can provide
an additional two-fold benefit to the inspection process: (1)
defects, which, depending on the camera optics, distance and
viewpoint, can appear broken in all images they are contained
in, they will likelier appear in the mosaic in its full extension,
so that their severity will be better appreciated; and (2) since
the different images are transformed to a common frame, the
mosaic will compensate for differences in camera viewpoint
and distance among the individual images. Besides, it is not
necessary to build a mosaic from all the images collected

Fig. 3. Mosaic obtained after a flight and saliency-based defect detection.

during a flight, but from a selected set of images, e.g. to get a
composite fully containing a single, large defect. Figure 3(left)
shows a mosaic built after a flight, which makes evident a
number of defective areas affected by corrosion.

Apart from the aforementioned, along projects MINOAS
and INCASS, we have addressed automatic defect detection in
images from a number of different technologies, ranging from
image processing to machine learning. Briefly speaking, the
toolbox comprises: (1) an image saliency-based framework,
inspired by the idea of defects as anomalies over inspected
surfaces, which, through either top-down or bottom-up ap-
proaches, have shown to be able to detect generic defects
using combinations of image contrast- and image symmetry-
based saliency operators; and (2) a set of specific detectors
that search for coating breakdown/corrosion (CBC) and cracks
over metallic surfaces. The latter category makes use of
a number of different combinations of colour and texture
descriptors (global and local HSV and RGB histograms, gray-
level co-ocurrence matrices energy, Law’s filter responses,
surrounding differences, dominant colours) to detect CBC by
means of neural networks and classifier ensembles, while for
crack detection we specifically search for areas resembling the
defect. By way of example, Fig. 3(right) shows the defects
found (light/dark gray areas) by means of an image contrast-
based detector over the left mosaic.
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